
CLaSSiC Project January 1990
Report CLaSSiC-90-07

AD-A217 383

Composite-Grid Techniques and Adaptive

Mesh Refinement
in Computational Fluid Dynamics

Robertus Franciscus van der Wijngaart

Center for Large Scale Scientific Computation
Building 460, Room 313

Stanford University DTIC
Stanford, California 94305 S ELECTE

JAN30 199011@ B-

j p m__ Ow ___________

UNCLASSIFIED
SECURITY CLASSFCATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE 0MB No 0904- 88

la REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a SECURITY CLASSF$(AT.ON AUTHORITY 3 DISTRIBuTION,'AVAfLAB 1TY OF REPORT

2b DECLASSiFiCATION, DOWNGRADING SCHEDULE UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT %uMBER(S)

CLaSSiC Report 90-07

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGAN ZA' ON
(If applicable) Department of the Navy

Stanford University 2E254 Office of Naval Research

6c. ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

c/o Sponsored Projects Office 800 North Quincy Street
Encina Hall, 660 Arguello Way Arlington, VA 22217-5000
,--A r'A _ __rn

8a NAME OF UNDING,'SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENT;FICATION NUMBER

ORGANIZATION (If applicable)

Office of Naval Research N00014 N00014-86-K-0565
8c ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNiT
800 North Quincy Street ELEMENT NO NO NO ACCESSION NO

Arlington, VA 22217-5000
11 TITLE (Include Security Classification)
COMPOSITE-GRID TECHNIQUES AND ADAPTIVE MESH REFINEMENT IN COMPUTATIONAL FLUID DYNAMICS
unclassified

12 PERSONAL AUTHOR(S) ,

Robertus Franciscus van der/Wijngaart
13a TYPE OF REPORT 13b TIt'E COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

interim I FROM_8hJU TOC-qJjj301 1990 January 227
16 SUPPLEMENTARY NOTATION

17 COSATI CuDES i SUBjECT TERNIS Co ,e oi-, recr'e if nece;jar, .,-d ,dent:f" by bior." ",",he'

'IELD GROUP SUB-GROUP Computational Fluid Dynamics, Navier-Stokes, Adaptive

Grids, Composite Grids, Schwarz Alternating Procedure

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
Viscous fluid flow is often smooth in most of the domain, with regions of rapid

variation confined to some rather narrow zones in the field. These zones (boundary
layers, shocks, etc.) cause problems during numerical solution of the equations govern-
ing the flow. The patched adaptive mesh refinement technique, devised at Stanford by
Oliger, et al., copes with these sources of error efficiently by refining the computa-
tional grid locally. This is done by creating separate fine grids for every region
of large error.

Because of the success of this approach, a project was started to extend its ap-
plicability to geometrically complex domains. As patched adaptive mesh refinement alread
entails multiple grids, it was decided that geometrical complexity would also be tackled
using several grids. An arbitrarily shaped domain typically cannot be covered by a singl

20 DISTRIBUTION/AVAILABiLITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED;UNLIMITED El SAME AS RPT C1 DTIC USERS unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Joseph Oliger (415) 723-0571
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICAT ON OF TH,S .

S/N 0102-LF-0 4-6603 UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

grid without severe distortion, but a covering can be established with only mildly
curved grids if more than one grid is allowed. Communication between these grids then

becomes an issue, as well as their creation.

In this project various types of communications between grids, based on the
Schwarz Alternating Procedure (SWAP), are examined for solving steady, two-dimensional
incompressible-flow problems. Of these, the traditional SWAP on sets of overlapping

grids works best and gives accurate results, despite the use of nonconservative inter-
polation procedures between grids. When reentrant problems occur, the pressures be-

tween grids may not match. A pressure-communication scheme is devised which solves

this difficulty.

In addition, the design of a system to create the multiple grids (composite grid)
interactively is presented, together with the data structures needed to define the

grids and their interactions. A scenario for combining composite and adaptive grids

is also described.

As a by-product, a new view on some classical solution procedures for incompres-

sible flows is developed, and a nonstandard type of staggered grid is prcposed. It

is found that the latter has several advantages over the standard staggered grid,

hereas its only drawback - an oscillatory pressure field - can easily be removed.

DD Form 1473, JUN 86 Reverse SECURITY CLASSIFICATION OF THIS DAGE

UNCLASSIFIED

COMPOSITE-GRID TECHNIQUES AND ADAPTIVE

MESH REFINEMENT

IN COMPUTATIONAL FLUID DYNAMICS

A DISSERTATION

SUBMITTED TO TIE DEPARTMENT OF MECHANICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR TIlE DEGREE OF

DOCTOR OF PIILOSOPIIY

By

Robertus Franciscus van der Wijngaart

December 1989

©Copyright 1990
by

Robertus Franciscus van der Wijngaart

All rights reserved

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and in quality,

as a dissertation for the degree of Doctor of Philosophy.

Joel H. Ferziger
(Principal Advisor)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and in quality,

as a dissertation for the degree of Doctor of Philosophy.

Joseph E. Oliger

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and in quality,

as a dissertation for the degree of Doctor of Philosophy.

Robert L. Street

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and in quality.

as a dissertation for the degree of Doctor of Philosophy.

Gene H. Golub

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

iii

Abstract

Viscous fluid flow is often smooth in most of the domain, with regions of rapid

variation confined to some rather narrow zones in the field. These zones (boundary

layers, shocks, etc.) cause problems during numerical solution of the equations

governing the flow. The patched adaptive mesh refinement technique, devised at

Stanford by Oliger et al. [OL184], copes with these sources of error efficiently by

refining the computational grid locally. This is done by creating separate fine grids

for every region of large error.

Because of the success of this approach, a project was started to extend its ap-

plicability to geometrically complex domains. As patched adaptive mesh refinement

already entails multiple grids, it was decided that geometrical complexity would also

be tackled using several grids. An arbitrarily shaped domain typically cannot be

covered by a single grid without severe distortion, but a covering can be established

with only mildly curved grids if more than one grid is allowed. Communication

between these grids then becomes an issue, as well as their creation.

In this project various types of communications between grids, based on the

Schwarz Alternating Procedure (SWAP), are examined for solving steady, two-

dimensional incompressible-flow problems. Of these, the traditional SWAP on sets _>

of overlapping grids works best and gives accurate results, despite the use of noncon-

servative interpolation procedures between grids. When reentrant problems occur,

the pressures between grids may not match. A pressure-communication scheme is

devised which solves this difficulty.

In addition, the design of a system to create the multiple grids (composite grid) 'n For
A&I

interactively is presented, together with the data structures needed to define the ; 0

grids and their interactions. A scenario for combining composite and adaptive grids "-d -

is also described.

Distribution/

Availability Codes
Avail and/or

Dist Special

As a by-product, a new view on some classical solution procedures for incom-

pressible flows is developed, and a nonstandard type of staggered grid is proposed.
It is found that the latter has several advantages over the standard staggered grid,
whereas its only drawback -an oscillatory pressure field- can easily be removed.

Acknowledgments

The work described in this thesis is the culmination of some four years of hard work.

During that period an estimated 410 gallons of strong coffee has flowed under the

bridge. It has been with the support of this precious liquid and of the friends

that I made at Stanford that I was able to carry out my research and finish this

dissertation.

So I should like to thank Peter James Coffee Company for the continuous supply

of Vienna Roast. I should also thank my advisor, Joel Ferziger, for getting me

started on my research. Joe Oliger, my co-advisor, deserves a lot of credit for

the many hours he spent patiently with Steve Suhr and me, discussing computer

science issues that proved so useful in this research. Steve Suhr in turn spent

many additional hours with me, helping to fill the gaps in my computer science

knowledge, and I greatly appreciate his contributions to this project. Gene Golub

got me interested in matrices, and it has been through the seminars and workshops

he organized that I got some of the best ideas contained in this work.

Then there are the persons whose main contributions have not been academic.

First there are Steve and Monica Caruso, who stood by me during the hardest

times I endured in this country, and who also gave me the greatest joys. They

taught me about the blessings of unconditional friendship and garlic-laden Italian

food. Then there are Andy and Eleanor Doty, in whose house I lived for most of

my time at Stanford. Their affection and support and genuine interest in whatever

I did have given me a sense of home and belonging, so many miles away from my"

native Holland. Ludolf Meester, my" good friend and fellow countryman, gave me

the opportunity to practice Dutch once in a while and to talk about all the things

that are so much better in the Old Country. Next year, no doubt, we will be rem-

iniscing together in the rain in Amsterdam about the wonders of the New World.

Sergio Bordalo, Ramu Avva, Steve Tzuoo, Rebecca Moore, and Amala Krishna.

vi

all former and current office mates, made my life at Stanford great by tolerating
my sometimes somewhat irreverent behavior, by engaging in so many stimulating
discussions about life, death, sex, and graduate school, and by bearing with the
pungent smells of coffee pervading our shared space. I am particularly grateful to
Amala, who went over several versions of this manuscript meticulously and caught

many typos. Ramana Venkata, whose keen wit, intelligence and perseverance I ad-
mire, and whose friendship I value highly, I thank you for all the help you have
given me and are giving me now. Ramani Pichumani, Ray Tuminaro, Dulce Pon-

celeon and Mark Kent, countless are the times you helped out when I was struggling
with obstinate computers and mysterious manuals. I can give back nothing but my

friendship and gratitude.

During the winter quarter of '88 I was able to do research in Tokyo at the Ship
Research Institute through a grant from the Japanese government. I would like very

much to thank my supervisor, Yoshiaki Kodama, and my host, Munehiko Hinatsu,
for inviting me and for making my stay such a wonderful experience.

Then there are all the friends and relatives I left behind in Europe and who have
helped maintain ties faithfully by writing to me and visiting me through all these
years. It is with both joy and sadness that I now return to Holland. Joy because I

will be among the people again whose company I had to miss for so long. Sadness
because I am leaving new friends behind. It should be this way.

Finally, I gratefully acknowledge the financial support provided by the Office of
Naval Research under contract number N00014-86-K-0-565, which has made this

whole adventure possible.

vii

Contents

Abstract iv

Acknowledgments v;

1 INTRODUCTION 1

1.1 Motivation and Objectives 1

1.2 Resolving Solution Complexity: Adaptive Grids 2

1.3 Resolving Geometric Complexity: Composite grid.............. 5

1.4 Combining the Two: Adaptive Composite Grids 11

1.5 Scope of this Investigation 11

2 SOLUTION OF FLUID-FLOW PROBLEMS: FOUNDATIONS 18

2.1 Introduction . 18

2.2 Physical Problem 19

2.3 Numerical Problem 20

2.3.1 Single Dom ains 20

2.3.2 M ultiple Domains 21

2.4 Composite Adaptive Grids 24

2.5 Grid Generation 25

3 DATA STRUCTURES FOR COMPOSITE GRIDS 30

3.1 Introduction . 30

3.2 Composite. Grid Concepts 31

3.3 D ata Structures . 37

4 M*E*S*H; CONSTRUCTION OF A COMPOSITE GRID 46

4.1 Introduction . 46

"iii

4.2 M*E*S*H Design Philosophy 47

4.3 User Interface 49

5 AN ADAPTIVE-COMPOSITE-GRID SCENARIO 53

5.1 Introduction 53

5.2 Componentwise Grid Refinement 54

5.3 Component-Independent Grid Refinement 56

6 COMPUTING SOLUTIONS ON COMPOSITE GRIDS 74

6.1 Introduction 74

6.2 Direct Solution 74

6.3 Schur-Complement Method 75

6.4 Schwarz Alternating Procedure 76

6.4.1 One-Dimensional Convection/Diffusion; Continuous Case - . 77

6.4.2 Numerical Experiments 83

7 NAVIER-STOKES SOLUTION PROCEDURE 87

7.1 Introduction . 87

7.2 Navier-Stokes Equations in Curvilinear, Nonorthogonal Coordinates 87

7.3 Discretization on Modified Staggered Grid 90

7.4 Central-Difference Correction 102

7.5 Application of Modified Staggered Grid: U-Shaped Channel103

7.6 Evaluation of Metrics 105

7.7 Boundary-Condition Implementation 10S

7.8 Convergence Criteria 112

7.9 Solution Strategies 114

7.9.1 Historic Formulation of SIMPLE and SIMPLER 114

7.9.2 Matrix Formulation of SIMPLE and SIMPLER121

7.9.3 Simplified Solution Method 124

7.9.4 Convergence Analysis 125

7.9.5 Computational Results 129

ix

8 NAVIER-STOKES SOLUTIONS ON COMPOSITE GRIDS 146

8.1 Introduction 146
8.2 Interpolation and Conservation 146

8.3 Asymmetrically Constricted Channel 147

8.3.1 Single-Grid Computations 149

8.3.2 Two-Grid Computations 150

8.4 Lid-driven Cavity Flow 152
8.4.1 Mesh Refinement 156

8.4.2 SWAP versus SWAPR 157

8.5 Periodicity and Single-valuedness 159

8.6 Cylinder in Crossflow 162
8.6.1 Flow Description 162

8.6.2 Numerical Solution 163

9 CONCLUSIONS AND RECOMMENDATIONS 189

9.1 Summary and Conclusions 189

9.2 Recommendations 191

A SAMPLE COMPOSITE-GRID DATA FILE 193

B M*E*S*H SYSTEM FUNCTIONS 204

C NAVIER-STOKES DISCRETIZATION COEFFICIENTS 217

References 220

x

List of Tables

3.1 Functions of composite-grid components 37

6.1 SWAPR on multiple nonoverlapping grids 84

7.1 Spectral radii for Gauss-Seidel iteration 111

7.2 Spectral radii for underrelaxed Gauss-Seidel iteration 111

7.3 Iteration results for square cavity 130

7.4 Iteration results for polar cavity 132

8.1 Characteristic lengths for channel with bump 149

8.2 Characteristic lengths fo- channel with bump; Osswald's results . . 150

8.3 Work units for local change of SWAPR relaxation factors 155

8.4 Work units for SWAP with varying overlap sizes 156

8.5 Spectral radii for first- and second-order-accurate Neumann boundary

conditions 158

8.6 Previous results for separation-bubble length LID 164

8.7 Composite-grid results for separation-bubble length LID 165

8.8 Viscous-drag coefficients CD, for circular cylinder 166

8.9 Pressure-drag coefficients CD,p for circular cylinder 167

8.10 Total-drag coefficients CD for circular cylinder 167

xi

List of Figures

1.1 Bad points fitted with rectangular refinement patches 14

1.2 Stair-step grid for circular domain 14

1.3 Mapping from computational space to physical space 15

1.4 Polar coordinates for circular domain 15

1.5 Escher-distortion coordinates for circular domain 16
1.6 Regions with number of sides unequal to four 16

1.7 Congestion of grid lines in waist 17

1.8 Composite grid for bow-tie-shaped domain 17

2.1 Physical problem with interior boundary 29

2.2 Geometrically consistent and inconsistent unions of subdomains . . . 29

3.1 Interior (shadow) interpolation points for extra smoothness 45

3.2 Composite-grid concepts for simple two-grid geometry 45

4.1 Generation of a sample composite grid 52

4.2 Duplicate whole structure using REFLECT 52

5.1 Three rotangles used to cover shear layer 68

5.2 Nine refinements in computational space needed for single error zone 68

5.3 Sample composite grid 69

5.4 Global refinement within component-grid structure 69

5.5 Cartesian reference frame to mark error points 70

5.6 Sample fence on a fence grid 70

5.7 Scan lines and planes 71

5.8 Inclusion of a danger point in a grid 71

5.9 A fence-violating bite from a refinement ?2

5.10 Stair-step grid for interior-refinement region 72

xii

LIST OF FIGURES xiii

5.11 Possible coverings of interior refinement region (computational space) 73

6.1 Two overlapping subdomains Q, and Q2, with intersection 3 85

6.2 Two overlapping subdomains fl, and 11v, with interior boundary

points P and "y 85

6.3 SWAPR: Neumann conditions at point y, Dirichlet at f86
6.4 Critical values for boundary point 0 versus convection speed c. . .. 86

7.1 Generic control volume with relative cell-face indices 134

7.2 Standard staggered variable arrangement 134

7.3 Standard staggered Cartesian grid; stencil for continuity equation . 135

7.4 Standard staggered non-Cartesian grid; continuity and u-momentum

stencils 135

7.5 Standard staggered rotated Cartesian grid (900); continuity stencil . 136

7.6 Modified staggered variable arrangement 136

7.7 'Primitive' and inter-node 'physical' pressures 137

7.8 Unfiltered pressure; strong oscillations 137

7.9 Filtered pressure without uniform-field preservation; weak oscillations 138

7.10 Filtered pressure with uniform-field preservation; no oscillations . . . 138

7.11 Diagram of variable locations for discrete u-momentum equation . . 139

7.12 U-shaped channel; physical domain 139

7.13 Grid for U-shaped channel (every 4
'h grid line shown) 140

7.14 Inner- and outer-wall pressures in U-shaped channel 141

7.15 Velocity profiles in U-shaped channel 142

7.16 Square lid-driven cavity 143

7.17 Polar lid-driven cavity 143

7.18 Uniform and stretched grids for square and polar lid-driven ca-ity . 144

7.19 Velocity fields for square and polar lid-driven cavity 145

8.1 Conservation law used on cell fragment to compute velocity169

8.2 Overview of Osswald's asymmetrically constricted channel169

8.3 Overview of new asymmetrically constricted channel 169

LIST OF FIGURES xiv

8.4 Single grid (truncated) for asymmetrically constricted channel ... 170

8.5 Close-ups of separation bubble behind bump 171

8.6 Log(characteristic lengths) versus log(Re) 172

8.7 Composite domain (truncated) for asymmetrically constricted channe173

8.8 Close-up of overlap region on composite grid 173

8.9 Horizontal velocities on single and composite grids 174

8.10 Close-ups of horizontal velocities in overlap region 175

8.11 Inflow and outflow on interface boundary 176

8.12 Distribution of -r along interface; discrete switch 176

8.13 Distribution of 'r along interface; smooth transition 177

8.14 Single-grid solution for lid-driven cavity 178

8.15 Fixed boundary conditions on both sides of interface 178

8.16 Flattened vortex for low-order approximations 179

8.17 Vertical-velocity profile for low-order approximations 180

8.18 Vertical-velocity profile for high-order approximations 180

8.19 Steepened T-response to normal velocities 181

8.20 Reentrant chain of refined grids 182

8.21 Reentrant pressure nodes lacking on staggered grid 182

8.22 Laminar flow regimes of circular cylinder in crossflow 183

8.23 Physical domain and boundary conditions for cylinder in crossflow 184

8.24 Composite grid for cylinder in crossflow (every 4th grid line shown) . 184

8.25 Separation-bubble length versus Reynolds number 185

8.26 Close-ups of separation bubble behind cylinder 186

8.27 Horizontal-velocity profiles for cylinder in crossflow 186

8.28 Pressure profiles on self-overlapped annular grid 187

8.29 Close-up of flow field around spinning cylinder 188

Chapter 1

INTRODUCTION

1.1 Motivation and Objectives

Fluids are everywhere: the air that we breathe, the water we drink, the gas in

our stoves, the blood in our veins. Fluids are capricious: sudden wind shear may

cause planes to crash, dimples in golf balls make them move faster through air

at high speed but slow them down at low speed, visibility in Los Angeles drops

alarmingly due to smog on some days and is perfect on others. Ubiquity and

whim have attracted man's attention since ancient times, but the inherently difficult

nature of fluids has defied analysis for ages. It was not until the advent of modern

mathematics and the analytical intellect of scientists like Newton, Euler, Bernoulli,

and Stokes that qualitative as well as quantitative insight in the behavior of fluids

was obtained. The formulation of the Navier-Stokes equations was the result of the

combined efforts of these researchers and their contemporaries. Up to this day, a

century and a half since their conception, these are the most important equations

used to predict and explain fluid flows,

Unfortunately, only very fev exact analytical solutions to the Navier-Stokes

equations are known, and those are typically of little engineering interest. Virtu-

ally every realistic problem involving fluid flow requires approximate solution of

the Navier-Stokes equations. An interesting semi-analytical approach is offered by

asymptotic expansions, which yield solutions in terms of (infinite) series involv-

ing some small parameter, such as viscosity, or geometric deformation. The bulk

of approximating techniques, however, is purely numerical. Of those numerical

techniques, the most popular ones are finite-difference and finite-element methods.

Which is chosen is largely a matter of taste and tradition. In this report we will

INTILODUCTION 2

discuss only finite-difference techniques.

The way these work is as follows: a set of discrete points is chosen on which

a sample of the whole continuous flow field is computed. These points are not

randomly picked, but chosen so that they can be indexed according to the dimen-

sionality of the problem, i.e., two indices for a two-dimensional problem, three for

a three-dimensional problem, thus forming a lattice or structured grid. Indices of

neighboring grid points differ by some small number. Derivatives are then approx-

imated by difference quotients involving neighboring points. This leads to a set of

algebraic equations that is subsequently solved for the flow quantities of interest.

The three steps -grid generation, discretization, solution- in the above de-

scribed finite-difference method all pose particular difficulties that are, to some ex-

tent, intertwined. As derivatives are approximated using values at discrete points,

these points must be sufficiently close together to yield accurate difference quotients

(small mesh sizes). Grid lines are formed by connecting points through incrementing

one index while keeping the other indices fixed. Grid lines of different families (dif-

ferent incremented indices) should not intersect at too small an angle, as this leads

to inaccuracies in the approximations of derivatives, and hence of the flow equa-

tions. Moreover, grid lines themselves should not change direction too abruptly (no

kinks).

These demands are not always easily met, especialy if the domain of interest has

a complex shape, or if the solution is difficult to describe locally. It is the purpose of

this work to arrive at robust, general techniques for dealing with these difficulties.

1.2 Resolving Solution Complexity: Adaptive Grids

Sources of error in the numerical computation of flow fields are often confined to

rather small regions. One may think of thin boundary layers, shock waves, flame

fronts, etc. Computing Fircurate solutions in these zones requires very small mesh

sizes. Applying these fine meshes throughout the domain is inefficient and may

be prohibitively expensive. One would like to apply fine meshes only where locally

required, and to use relatively coarse meshes elsewhere. Typically, we do not know in

INTRODUCTION 3

advance where the solution will be hard to approximate, so some kind of automated

error estimation procedure should be used to determine dynamically where fine grids

are needed. This is called solution-adaptive mesh refinement (adaptive grids). Many
solution-adaptive mesh refinement methods have been devised. For an extensive

description the reader is referred to [CAR85] and [BER82]. We will merely mention

the major classes of grid adaptivity:

* Global mesh refinement: One starts with a fixed number of grid points.

As the solution is computed iteratively, the error is estimated, and grid points
are moved towards regions of large error. This technique, the oldest adaptive-

refinement method, has been improved substantially over the years, and has

reached a degree of sophistication not equalled by others. Initial difficulties,
such as extreme deformation of grid lines, have largely been overcome. Nev-

ertheless, the technique has some important drawbacks:

- as points move from one region to another, some areas tend to become

devoid of points; no minimum accuracy may be prescribed for a fixed

number of points.

- error-estimation procedures are notoriously noisy, which leads to incor-

rect inputs to grid-point-moving schemes.

* Local mesh refinement: Now the set of initial grid points is kept in place.
Rather than moving points, new points are added where the error is large.

This means that no regions become void, and a minimum accuracy can be

guaranteed. However, depending on the particular type of adding strategy,

new difficulties arise:

o Embedded mesh refinement: Added points are incorporated into the data

structure of the already existing coarse grid. Typical ways of doing this

are:

Tensor-product refinement (refinement by lines): Whole new lines
of grid points are added to refine error zones. This works reasonably

well for localized refinement of regions with small aspect ratios. but

INTRODUCTION 4

becomes very inefficient when the error zone is elongated, in which

case a substantial part of the grid must be refined. This problem is

aggravated if the zone is diagonal to the grid lines.

- Refinement by points: New points are added only there where they
are needed (see, e.g., [DAN86]). This technique is efficient with

respect to the number of points used to compute a solution, but re-

quires a substantial overhead in the storage of the separate points,

generation of boundary conditions for grid lines that end in the in-

terior of the domain, and tracking of isolated points within refined

regions ('holes').

o Patched mesh refinement: The approach taken by Berger [BER82] and

Caruso [CAR85], called patched adaptive mesh refinement, involves sep-

arate refined grids for whole areas of large error. The method, which will

be explained in greater detail below, has the advantage that it combines
the robustness of embedded refinement with the efficiency of global re-

finement. Moreover, standard solution procedures for regular grids can
be applied, as solutions are computed on sets of separate, regular grids

In the patched adaptive mesh refinement technique a solution is first computed

on a relatively coarse grid, which is expected to be fine enough for the smooth regions

of the flow, but too coarse for some other parts. Using the Richardson extrapolation

technique, the error in the solution is estimated at every mesh point. If the error

is above a certain threshold value, the point is flagged as a bad point. The bad

points are clustered according to an algorithm which tries to recognize coherence of
collections of points. Next, the clusters are fitted with rectangular grids of smaller

mesh size (see Fig. 1.1). These will generally not be aligned with the grid lines of
the coarse grids. Depending on the cover fraction (ratio of number of bad points

over number of good points contained in the refined grids), a particular clustering

is rejected or accepted. Sometimes several passes are necessary. Finally, boundary
values for the refined grids are interpolated from the coarse grid, and independent

solutions are obtained on the refinements. The procedure may be defined recursively

INTRODUCTION 5

by computing the error on the refined grids and invoking new levels of refinements.

Two bottlenecks exist in this approach. First, the creation of the refinements

according to some clustering technique is complex and involves heuristics. Second,

the interpolation of boundary values from the coarse grid to the refinements, and

the communication between refinements themselves in case they overlap, is not

conservative, in general. This has been known to lead to instabilities, and, in

computing weak solutions to the Euler equations, may result in incorrect shock

speeds and/or locations. Shocks need not concern us here, as we are primarily

interested in solving incompressible, viscous flow problems, which allow no such

solutions. Conservation is of importance, although it should be stressed that it is

nothing to be dogmatic about. What we ultimately desire is an accurate solution,

no more, no less. Some remedies have been suggested in the past to fix the lack

of conservation of interpolation schemes, which will be discussed in Chapter 8. For

successful implementation of the patched adaptive mesh refinement technique for

rectangular domains we refer to Caruso [CAR85].

1.3 Resolving Geometric Complexity: Composite grids

Finite-difference methods are easiest to implement for rectangular regions. Grid

lines are defined by Cartesian coordinate lines, leading to simple, rectangular grid

cells and to families of grid lines that intersect each other at right angles. In

addition, the boundaries of the domain coincide with grid lines, which makes for

an easy implementation of boundary conditions. When the domain of interest is

not a rectangle, but, for instance, a circle, several options exist. We may still want

to apply a Cartesian grid, resulting in a stair-step approximation of the physical

boundary (see Fig. 1.2). This has two main disadvantages. First, we have to

do bookkeeping on all the cells on the boundary in order to determine which are

interior points and which receive boundary conditions. Second, and more important.

application of boundary conditions becomes inaccurate, as grid points no longer lie

exactly on the boundary of the physical domain. It has been shown that this can
give rise to spurious waves (see, e.g., [PED86]) which corrupt the entire solution

INTRODUCTION 6

and decay very slowly as the mesh size decreases.

Hence, it has become common practice to use grids with curved grid lines which

follow the boundary: so-called boundary-fitted grids. Here the concept of com-

putational space is introduced explicitly. As the dimensionality of the physical

problem equals the number of indices of the grid points, the indices may be viewed

as coordinates in a transformed space: computational space. Using this concept,

a grid is then defined by a rectangular array of indices -the domain in computa-

tional space- plus a mapping from the collection of pairs (or triplets) of indices to

physical space. The mapping itself is called a coordinate transformation. It may

be an explicit formula, as in algebraic grid generation procedures, or a solution of

a differential equation, as in the numerical grid generation methods proposed by

Thompson et al. [THO85], or simply a list of pairs of points in computational and

physical space. If an explicit formula is available, it makes sense to consider it a

continuous mapping from a compact domain in computational space to a compact

range in physical space (see Fig. 1.3). In the other two cases a continuous mapping

can be defined by interpolation of discrete data. This is of particular importance

for describing the boundary of the physical domain in computational coordinates.

If a continuous representation of the boundary is available, then any point on a

bounding coordinate line in computational space is mapped into a point on the

boundary of the physical space. Thus, if one changes the number of points in a

coordinate direction in computational space, one is assured that boundary points

in computational space still map into boundary points in physical space.

This seems to resolve the problems; all one has to do to create a boundary-fitted

grid for a physical domain is to specify a continuous description of the boundary

and define some means of mapping a region in computational space into the interior

of the boundary in physical space. For the circular region mentioned above, polar

coordinates are suitable to describe the boundary. Unfortunately, they lead to a

singularity in the center (see Fig. 1.4), where one side of every grid cell shrinks to a

point. Another mapping, shown in Fig. 1.5, removes that singularity, but introduces

degeneracies on the boundary where coordinate lines of different families become

parallel. The seemingly trivial shape of a circle turns out to be difficult to cover

INTRODUCTION 7

with an appropriate grid!

Should we choose to solve problems on domains such as the triangular or pentan-

gular shapes shown in Fig. 1.6, similar difficulties occur. The root of the problem is

the fact that we are trying to map a rectangular region in computational space into

a region with a different number of comers in physical space. A continuous, nonsin-

gular mapping cannot introduce new singularities (comers) on the boundaries, nor

smooth out original ones. Even if we allow stair-step grids in computational space,

which would remove the computational efficiency of using simple Cartesian-product

subspaces in computational space, we would find that the number of comers of the

grid is at least four, and can only increase by an even number by adding or remov-

ing grid cells. Hence, we conclude that only regions resembling warped rectangles

('warptangles'), or unions of those, can be furnished with proper boundary-fitted

grids.

Even then, problems can be expected when trying to find grids for regions with

narrow waists, such as the bow-tie-shaped region shown in Fig. 1.7. In order to

have a sufficiently fine mesh near the outer edges, the middle section experiences

congestion of grid lines, which is wasteful in case the solution there is smooth. At the

same time, grid cells may become excessively skewed, which deteriorates accuracy.

These problems become even more acute in three dimensions. The solution

proposed here is to use multiple -possibly overlapping- grids of mild curvature

to cover the physical domain. This fits in nicely with the patched adaptive mesh

refinement strategy, which also entails several grids. The result of tessellating the

physical domain is a composite grid (see Fig. 1.8), and the tessellation itself is of-

ten called domain decomposition. We will now discuss the work of other researchers

in this area.

Three different main approaches to domain decomposition exist. The first is

purely numerical. As parallel computers are gaining popularity, a lot of attention

is being paid to dividing large computing tasks efficiently into many small jobs

that can be distributed among different processors. Although overhead is involved

in exchanging data between processors (access and transport time) and in solving

pieces of problems independently and combining results afterwards, it is still possible

INTRODUCTION 8

to obtain an increase in speed if enough processors are available to do the work. Most

research in this area focuses on solving simple equations (e.g., Poimon or Helmholtz)

on simple domains very rapidly [ROD83], [EHR86], [QUA87], [TAN87], although

interest in more difficult equations is increasing [CHA88B], [MAR87]. However,

almost all the domains considered are of simple shape and could easily be covered

with one grid.

Another approach to domain decomposition is to recognize different regions in

a domain with different physical characteristics. In each such region a different

equation is being solved. One of the oldest examples is Prandtl's scheme, in which

inviscid flow is computed in an outer region, and boundary layers are resolved near

solid bodies. More recent examples are found in [CHI87], [SCR88]. Again, the

emphasis is on solving problems on relatively simple domains.

The third view of domain decomposition -the one we focus upon- is that

it is a good tool to tackle geometrical complexities. Our aim is not so much to

get mazirmrum speed of computation, but to obtain accurate solutions for regions of

difficult shape. In the engineering community this seems to be the overwhelming

approach to domain decomposition. It should be noted that this approach is fully

compatible with the first one, as geometrically simple subdomains can be divided

even further until a number suitable for the number of (parallel) processors available

is obtained.

One of the major applications of computational fluid dynamics is aerodynami-

cal simulation. Traditionally, it has been in this field that the most sophisticated

grid generation techniques were introduced, since many of the occurring shapes are

complex (wing-fuselage combinations, rows of turbine blades, etc.).

One of the earlier attempts at computing aerodynamical flows on composite grids

is reported by Atta and Vadyak [ATT83). They solve the full-potential equation on

sets of overlapping grids. Exchange of information between component grids takes

place through interpolation of the velocity potential. Hence, conservation of mass,

momentum, or energy is not possible.

Major work was done by Rai et al. In [HES86] a composite-grid method for the

unsteady Euler equations is described. The components of the composite grid do

INTRODUCTION 9

not overlap but just touch (patched grids), and the exchange of information between

patches takes place through the definition of flux-balance boundaries on which ex-

act conservation is imposed. This is done relatively easily because the method is

explicit, and the interior solutions on component grids can be updated using con-

ventional integration schemes before the boundary values are computed. Moreover,

the Euler equations have the form of hyperbolic conservation laws, which provid: a

natural structure for computing fluxes of all dependent variables. An extension of

this method to implicit computations is presented in [RA185] and [RA186]. Here an

iterative scheme is developed to update the boundary values of patches implicitly,

again making heavy use of the flux-formulation of the Euler equations. At con-

vergence full conservation is again obtained. In [RA187] the step is made to the

compressible Navier-Stokes equations. Now component grids are also allowed to

overlap to provide greater flexibility in defining component boundaries. Conditions

for patch boundaries are still conservative, but straightforward, nonconservative

interpolation of the dependent variables is applied on overlap boundaries. In this

case, some problems were experienced with high-frequency oscillations near overlap

boundaries, possibly due to the the lack of conservation.

Holst et al. [HOL85], [KAY86] describe a composite-grid method for compress-

ible flows in which component grids are allowed to overlap by a fixed number of

mesh cells. Grid points on interfaces coincide exactly, so that information may be

transferred fully conservatively (see also [VEN87A], ITAK), [HOL87]). Although

this is a desirable property, it leads to relatively rigid grid systems. Composite

grids around complex geometries are built by constructing a base grid of logically

rectangular structure (in computational space). Finer grids are embedded in this

structure by taking out sub-blocks and replacing them by grid blocks of smaller

mesh size. Grid blocks at the finest level, although still logically rectangular, have

at least one body-fitted side. An additional feature of the method is that different

equations are solved on different grid blocks; Euler in inviscid regions, and thin-layer

Navier-Stokes near solid boundaries. It should be noted that, although coarse-grid

points on interfaces coincide, the grid point distribution in the direction normal to

an interface may change abruptly. In other applications ([VEN87B], [BER$6)) the

INTRODUCTION 10

grid lines are continous across interfaces in the normal as well as in the tangential di-

rection. These composite grids can be interpreted logically as block-stair-step grids.

An interesting variation on the techniques described above is offered by Nakahashi

et al. [NAK87]. His composite grid consists of regular finite-difference grids around

solid bodies plus a finite-element grid in between to fill the irregularly-shaped gap.

At the interface between a finite-difference grid and a finite-element grid the grid

points coincide to ensure conservation.

Another important contribution to aerodynamical composite-grid computations

is the Chimera approach, developed at NASA Ames [DOU85], [BEN86] to solve the

Euler equations. Here the concept of overset grids is introduced. Composite-grid

construction again starts with the definition of a base grid, but now no blocks are

taken out. Instead, smaller structures are defined on top of the base grid; they are
'overset'. In general, such a smaller gr ' . .rlaps the base grid, and also part of the

main solid body around whicl, the base grid is created. A scanning procedure detects

the latter invasions and eliminates points from grids that fall inside solid bodies.

Because grid points are nc,: roincident, interpolation has to be used to exchange

information between grids. The nonconservative interpolation scheme used causes

some problems and the authors suggest refining the mesh to overcome these.

Composite-grid techniques for incompressible flows are less numerous than those

for compressible flows and have started receiving attention only recently. One of t,

principal difficulties of composite-grid solutions to incompressible-flow problems is

the conservative transfer of information between component grids. The continuity

equation no longer has the hyperbolic-conservation-law form because of the con-

stant density. Hence, the uniform flux transfer across flux boundaries, as employed

by Rai et al., is not applicable. In practice, researchers using composite grids for

incompressible flows always let the components overlap and interpolate data in the

region of overlap [FUC85J, [MEA86], [MEA8SBI, thereby accepting the inherently

nonconservative properties of interpolation. Correction factors to compensate for

excess or defect mass flow are often used, but, as we will see in Chapter 8, these do

not restore conservation at convergence. Fuchs JFUC87] gets around the noncon-

servation problem by using streamfunction and vorticity instead of the primitive

INTRODUCTION 11

variables velocity and pressure, and by interpolating values of these quantities be-

tween component grids. Hiuser et al. [HAU86] solve the free-surface shallow-water

equations for a very complex domain modeling the harbor of Hamburg, but their

assumptions on the flow reduce the equations to the simple Laplace equation. Nei-

ther of the latter two approaches has difficulties with mass conservation, but they

are not general enough for practical engineering applications.

1.4 Combining the Two: Adaptive Composite Grids

As was mentioned in Section 1.3, the patched adaptive mesh refinement method and

the composite-grid technique employ several grids simultaneously to tackle solution

complexity and geometry complexity, respectively. An obvious generalization is the

combination of the two in a hybrid method called adaptive composite grids. We will

expand on the problems associated with this generalization in Chapter 5.

1.5 Scope of this Investigation

In this report we will investigate in depth the strategies for solving fluid-flow prob-

lems on complex domains using composite grids. Emphasis will be laid on two-

dimensional, incompressible, steady, viscous flows.

Chapter 2, which is somewhat philosophical, lays the general foundation for

composite-grid solution methods. Here the definitions of concepts used throughout

this report are presented. Special attention is devoted to the distinctions between

the various types of iteration and convergence pertaining to composite grids.

Chapter 3 is concerned with the more practical issues of composite-grid con-

structs. In it we describe the ingredients necessary to formulate a physical problem

on a general set of grids. The data structures needed for implementation of the tech-

nique follow quite naturally from the definitions of composite-grid descriptors. An

example of a data file describing an actual composite grid is given in Appendix A.

Chapter 4 explains the design of an interactive system called M*E*S*H (Mesh

Engineering System for Hydrodynamics), which is being developed to aid in the con-

struction of a composite grid. A comprehensive description of the system functions

INTRODUCTION 12

is given in Appendix B.

Chapter 5 discusses the choices to be made when combining adaptive grids with

composite grids. The most promising option is analyzed in greater detail, and a

possible scenario is outlined. The main idea is that refinements should be defined

independent of components of the composite grid for reasons of efficiency.

Chapter 6 contrasts two fundamental ways of solving differential equations on

compound domains, i.e., the Schur-Complement Method and the Schwarz Alter-

nating Procedure (SWAP). Although these are theoretically equivalent, they differ

substantially when implemented. The Schwarz alternating procedure is chosen as

the basic scheme because it is easier to implement, has lower storage requirements,

and can be used in conjunction with standard solution procedures on single grids.

A variation (SWAPR) is investigated for use as an iterative method on sets of grids

that do not overlap.

Chapter 7 presents the numerical method for solving the Navier-Stokes equations

on a single grid. The discrete equations are derived by first writing the Navier-Stokes

equations in computational coordinates, and subsequently integrating them over

cells in computational space. A special feature is the use of a modified staggered

grid which does not require specification of the pressure on the boundary of the

grid. It is shown that the introduction of the checkerboard pressure pattern to

which this grid is prone does not pose any problems, as it can be eliminated by

simple averaging or projection methods. For the solution of the discrete equations,

the well-known SIMPLE and SIMPLER methods [PAT80] are examined in terms

of general matrix equations. The insight gained from this analysis enables us to

formulate a simplified, more robust version of SIMPLER (essentially the same as

PRIME [MAL83]).

Chapter 8 starts with an extension of SWAPR for two-dimensional problems,

employing local variation of parameters to make the method suitable for prob-

lems involving inflow and outflow through a single grid boundary. The efficiencv

of SWAPR is compared with that of SWAP. The resulting method is applied to

some practical problems for which experimental, numerical, or asymptotic data ex-

ist. These include everybody's favorites: the lid-driven cavity flow and the circular

INTRODUCTION 13

cylinder in crossflow. In addition, results are presented for the floz asymmet-

rically constricted channel, and for the flow around a spinning cylinder in a straight

channel.

Chapter 9 summarizes our findings and presents recommendations for future

work, in particular in the direction of three-dimensional problems and a realistic

implementation of the adaptive-composite-grid strategy.

INTRODUCTION 14

Coarse grid

xx

K~ MM

'Bad
points

xK

Figure 1.1: Bad points fitted with rectangular refinement patches

F 1

x / t

Figure 1.2: Stair-step grid for circular domain

INTRODUCTION 15

Computational Physical

Space Space

Tl Mapping Y

t-x

Figure 1.3: Mapping from computational space to physical space

Figure 1.4: Polar coordinates for circular domain

INTRODUCTION 16

Degeneracy Dgnrc

Degeneracy Degeneracy

Figure 1.5: Escher-distortion coordinates for circular doai

Degeneracy Singularity

Figure 1.6: Regions with number of sides unequal to four

INTRODUCTION 17

Figure 1.7: Congestion of grid lines in waist

Figure 1.8: Composite grid for bow-tie-shaped domain

Chapter 2

SOLUTION OF FLUID-FLOW PROBLEMS:

FOUNDATIONS

2.1 Introduction

In this chapter we lay the foundations of methods for solving fluid-flow problems

numerically on multiple domains. Section 2 is devoted to a global description of

the kind of physical problem we are interested in solving. Translating the physical

problem into a numerical problem on a single grid can be a formidable job, which

is even more complicated if several grids are used to represent the solution. Many

solution algorithms exist; they are generally iterative.

Section 3 provides tools to discuss and construct methods for computing approx-

imate solutions on multiple domains in a somewhat formal framework; definitions

are given of numerical solutions, of different types of convergence, of numerical ge-

ometries, of numerical boundary conditions, and of global iteration processes on

multiple domains. These definitions enable us to restrict the classes of problem def-
initions and solution strategies. Fundamental composite-grid philosophies are laid

down here.

Section 4 discusses the basic implications of adding solution-adaptive grids to

the numerical machinery of composite grids.

Section 5 summarizes the tasks facing the numerical analyst who wants to solve

a problem on a composite grid. Here we will take the approach that as much of the

numerical problem formulation as possible should be included in the capabilities of

a grid-generation system. In that sense, the name problem-generation system might

be more appropriate.

18

FOUNDATIONS 19

2.2 Physical Problem

We are interested in solving fluid-flow problems on complex, (possibly) multiply-

connected, finite domains. That means that we want to satisfy some partial differ-

ential equation L(w) = f in the interior of a region 11. The boundary of S1 can be

divided into an interior part (i) and an exterior part (e): 80l = 801' U 81r. Interior

boundaries occur, for example, in interface problems (see Fig. 2.1). Boundary con-

ditions can be manifold, although they can evidently all be captured in the single

(cryptic) formula B(w) = h on 8Qf, where B is an arbitrary operator. For sim-

plicity, but without great loss of generality, we will restrict the classes of boundary

conditions to:

a) 'Real', independent boundary conditions, for which B and h are prescribed

b) Periodic boundary conditions, for which h is a function of w on some other

part of &fl

c) 'Hyperbolic' boundary conditions, for which B and h depend on the solution

w in the interior of S1.

When computing incompressible flows, we encounter the first two types of boundary

conditions, although the third is sometimes applied on outflow boundaries of almost

hyperbolic character (convection dominated). In unsteady problems, the partial
differential equation, the boundary conditions, and the boundary itself may all

change in time. In the sequel, however, we will only consider quasi-steady problems,

which means we are interested in obtaining a solution on a given domain at a given

time (boundary-value problem).

For classification purposes we will divide the problem boundaries into

a) Demarcation or physical boundaries (types a and c)

0) Periodic boundaries (type b)

For a complete definition of the physical problem we need:

FoUNDATIONS 20

" A (piecewise) geometric description of &I according to the above classification

(boundary types a or P)

- for every point on the physical boundary an algorithm to compute B and

h from a known interior solution, or a fixed formula for B and h

- for every pair of periodic boundaries a mapping from the one into the

other, plus a functional relationship between every pair of solution values

(usually, this will simply involve equality of the solution values)

" A differential equation that holds in the interior of S1

A function w which satisfies L(w) = f in S1, and B(w) = h on i9Q is called a

physical solution. The (aormed) space of all physical solutions is denoted by W.

2.3 Numeri"a' eroblem

Now that physical problems and their solutions have been defined (in principle), it

is tirre to introduce numerical approximations to them.

2.3.1 Single Domains

In essence, the numerical problem consists of the determination of a finite number

of parameters that define a function w n on Q. For quasi-steady problems, that

function is evaluated at a particular time.

DEFINITION: A function wn is called a numerical solution if, in some sense,

11w - wn is small (superscript n indicates 'numerical').

Because W n = {w"I parameters are permissible) is a finite-dimensional sub-

space of the physical solution space TV, which, for arbitrary boundary conditions.

is infinitely dimensional, we can not expect 1w - wt1 ln = 0. The best we can do is

construct a sequence of functions {wn}j,=1..... with increasingly more parameters (j

is the number of degrees of freedom or dimensions), which converges to the solution

FOvNDATIONS 21

if W is a separable space. Or, we can construct a sequence of problems whose so-

lutions, if obtained, converge to the physical solution. This is the basis of theories

of classical convergence.

Important as they may be, these theories are not the subject of the present

investigation. In fact, we shall be satisfied with obtaining one function w; , which we

will call the numerical solution. Numerical solutions themselves can usually only

be computed as limits of sequences of solutions to simplified (linearized) problems.

These solutions are called iterates. The only requirement on iterates is that they

converge to the numerical solution. We call this type of convergence: iterative

convergence. The only requirement on the sequence of intermediate, simplified

problems, including their boundary conditions, is that the final problem have the

correct numerical solution.

2.3.2 Multiple Domains

Suppose now that we want to compute a numerical solution on a union of subdo-

mains {,lk}, with P C UK fk. Each numerical subdomain solution procedure has

the properties that hold for the global domain, if only because we may set K = 1. A

numerical solution on the union of subdomains is defined by a set of solutions on the

subdomains plus an interpolation scheme in regions of overlap. The interpolation

scheme may be simply a selection switch.

DEFINITION: A union of subdomains is called geometrically consistent if

both e =-- 8(UK=I Qk), and OW C UK-1((9S2)

This means that every point on the boundary of Qt, be it an interior or an exte-

rior boundary point, also lies on the boundary of at least one subdomain, and that

the union of subdomains exactly covers the whole physical domain. See Fig. 2.2

for examples of consistent and inconsistent unions of subdomains. To avoid overly

cumbersome notation, we will consider only exterior boundaries from now on. un-

less otherwise indicated. The discussion, however, holds for interior and exterior

boundaries alike.

Two basic remarks apply:

FOUNDATIONS 22

e Body-fitted coordinates lead naturally to geometrical consistency for single

domains, whereas stair-step grids do not.

e The strategy of blocking out parts of a grid that extend beyond the boundaries

of the physical domain -as Chesshire [CHE86] does, for example- does

not preclude geometrical consistency, as the excess cells are not part of the

subdomain. Boundary tracking is indeed established using a body-fitted grid.

A geometrically consistent covering can always be found, since 00 is known (e.g.,

in terms of splines, conic sections, etc.). Its definition is contained in the physical

model. In the present study we will focus on body-fitted coordinates and geomet-

rically consistent unions of subdomains. Both have to do with easy and accurate

representation of boundaries and boundary conditions. It should be stressed, how-

ever, that neither is required.

DEFINITION: Boundary conditions on a geometrically consistent union of sub-

domains are called functionally consistent if they lead to a single unambiguous

solution when taken to convergence in the classical sense.

Intermezzo: Often, a numerical solution consists of a set of discrete node-

point values plus a fuzzy concept of interpolation in between. (This is true

in particular for finite-difference methods.) In fact, usually the interpolation

scheme is intentionally left undefined. This makes the concept of unambigu-

ous numerical solutions, if defined on noncoinciding discrete points in space,

rather vague. A way out is to define nonambiguity as a limiting property of

discrete functions as the mesh spacing goes to zero.

We must require functional consistency of boundary conditions to ensure classical as

well as general iterative convergence. This does not mean that boundary conditions

on overlapping parts of boundaries need to be the same, not even at points that

coincide. The only thing that counts is the solution on overlapping pieces of the

boundary at iterative convergence.

FOUNDATIONS 23

We now give the basic definitions that describe iterative stepping procedures for

problems on multiple subdomains in the spirit of the Schwarz Alternating Procedure

(See Chapters 6 and 8).

DEFINITION: A global iteration I, consists of a walk through an ordered

sequence of subdomains: I lj = 1, 2,..., L,, with at, E (1,K), L, 2 11. Here

j signifies the iteration number, L is the number of visits to subdomains (this is

usually larger than the number of subdomains K), I is the sequence number of

the visit, and a, is the subdomain index pertaining to the I"' visit. A visit to a

subdornain implies computations on that subdomain. A sequence is an explicit list,

or a recipe to generate the list automatically.

This definition is general enough to describe any iterative process. In fact, one

might describe any convergent solution process as a single global iteration. This

would obviously lead to degeneration of the concept of iteration. Nevertheless,

the above definition is useful to describe iteration processes in which a dynamic

determination of visits to subdomains takes place.

DEFINITION: An iteration process consists of a series of global iterations

{Ij1, with j = 1,2,....

DEFINITION: A stationary iteration process consists of a repetition of

global iterations {I}, which are constant. That means that the list (or the recipe

to generate the list) does not depend explicitly on the iteration index j.

For a stationary iteration process to converge, we must have (1, K) C {Qj},

or in words: every subdomain must be visited at least once during every global

iteration. Even though the sequence of subdomains is fixed in a stationary iteration

process, the problem, solved on a specific subdomain in the sequence, may still

change from one iteration to the next (also, the successive problems to be solved

on one physical subdomain which appears more than once in the sequence will be

different, in general).

DEFINITION: A stationary iteration process in the restricted sense

is a stationary iteration process in which the numerical algorithm for updating the

FoUNDATIONS 24

solutions on subdomains is constant, i.e., does not depend explicitly on the iteration

index j.

Even in a stationary iteration process in the restricted sense, the numerical
algorithm applied to the same physical subdomain that occurs more than once

within one iteration sequence may be different for every occurrence.

A stationary iteration process in the restricted sense may converge to the cor-
rect numerical solution on a geometrically consistent union of subdomains, only
if the boundary conditions on 8(Uk=<11k) are functionally consistent. Because the

boundary conditions in this case are determined by the same algorithm during every

global iteration, we can only ensure iterative (and classical) convergence if we apply

the correct physical boundary conditions at every point of (Uk=1i2k) at least once

during every global iteration. By correct physical boundary conditions we mean

those numerical boundary conditions which, in the limit of vanishing mesh size,
would yield the physical or periodic boundary conditions as described in the section

on the physical problem.

DEFINITION: Boundary conditions are called strongly functionally con-
sistent if the correct physical boundary conditions are applied at every point of

89(U '=1 2k) at every occurrence in the global iteration.

2.4 Composite Adaptive Grids

The covering of the domain by a set of subdomains that is specified in advance
will be called the basic union of subdomains. An interesting situation arises if

new subdomains S2, are added dynamically to (and perhaps later deleted from) the
basic union of subdomains, as is the case with the patched adaptive-grid-refinement

technique. In principle, we should then abandon the concept of iteration processes

as defined before, be they stationary or not. Because of the hierarchical structure

of levels of refinement in patched adaptive-grid systems, however, it is possible to

extend our definition of, say, stationary iteration processes to the present situation

without great difficulty.

FOUNDATIONS 25

DEFINITION: A quasi-stationary iteration process consists of a series of
global iterations, {I,), which are constant with respect to the basic union of subdo-
mains U= Ilk, i.e., independent of the iteration index j (again, we may supply a

-- constant- recipe to determine a global iteration, rather than giving an explicit

list).

This definition lends special significance to the basic union of subdomains cover-
ing l. That is no coincidence, since that set of subdomains is constructed explicitly
by user interaction. Analogous definitions can be put forth to extend the notions

of stationary iteration processes in the restricted sense, and of strong functional
consistency. This effectively decouples the iteration process on the basic union of
subdomains from the ones on unions of subdomains on successive levels of refine-

ment. One might consider using the concept of strong functional consistency for
patched adaptive-grid systems to indicate that the correct physical boundary con-
ditions are applied at all points of the whole system that lie on &Il. There is no
real incentive, though, to insist on strong functional consistency in this sense.

2.5 Grid Generation

It is important to realize that the definition of the numerical procedure to solve a
problem using finite differences is composed of several conceptually different stages:

1. Creation of the basic union of subdomains as a strictly geometrical entity.

2. Construction of curvilinear (body-fitted) coordinate systems on the subdo-

mains.

3. Specification of an iteration process on the union of subdomains.

4. Definition of numerical algorithms for updating the solution on each subdo-

main:

(a) Construction of a finite-difference mesh on the subdomain,

(b) Formulation of the set of (nonlinear) equations for the unknowns on the
interior lattice points.

FOUNDATIONS 26

(c) Formulation of boundary conditions for all points on the boundary of the

subdomain,

(d) Linearization and solution of the set of algebraic equatic pertaining to

the subdomain.

Strictly speaking, only (1), (2), and (4a) should be considered in a grid-generation

system. Items (3), (4b), (4c), and (4d) are parts of the solution algorithm. However,

it makes sense to incorporate at least (3) and (4c) in the grid generation system

if we are willing to view that system as the collection of procedures specifying

the information necessary to make the computational process during one global

iteration unambiguous. One might say that a grid generation system in that sense

is a template for computations, with initial values and an interior solution scheme

as parameters. We can take this even one step further, including item (4b) in our

system. Suppose we have a good physical intuition about the flow field. Then we

might want to specify, in advance, different solution procedures in the interiors of

subdomains in different parts of the field. The classical viscous/inviscid coupling

and the more contemporary zonal-modeling approach to turbulence computations

are examples, provided the latter is made fully automatic.

At any rate, these are just physical considerations and hence only contingent

upon the location of subdomains within the field, and not on the position of the

subdomain within the sequence to be visited during a global iteration or on the

interaction with other subdomains that might overlap it. As such, incorporation of
item (4b) into the grid generation system does not require much information to be

specified.

This is not the case with the specification of boundary conditions, which is essen-

tially a numerical affair. New conditions need to be formulated every time a certain

subdomain is visited during the iteration process. Moreover, formulation of bound-

ary conditions consists of two distinct parts: what type of boundary conditions to

apply (e.g., Neumann, Dirichlet, mixed), and whe to get the information from

to quantify the boundary conditions (e.g., other subdomain(s), external physical

boundary conditions).

FOUNDATIONS 27

To alleviate the burden of expressly specifying the entire iterative process by

hand, we will make the following simplifying assumptions:

" consider only stationary iteration processes,

" consider only strongly functionally consistent boundary conditions for the

subdomains.

These simplifications leave us with specifying different boundary conditions for
points on Ur=i(9f2k)\8(U'j ilk) every time a specific subdomain is visited within

the (constant) global iteration, which involves a still considerable amount of work.

A compromise may be reached by providing some default, robust -but therefore

nonoptimal- algorithm to determine boundary conditions, combined with an op-

tion to overrule that algorithm with a preferential setting.

Some general remarks concerning the components (1) through (4) of the grid

generation system should be made before embarking on a more detailed description

of the system in a subsequent chapter.

(1) and (2): It is possible, in principle, to define a subdomain as a simple, struc-

tureless patch on a surface by supplying a periodic, connected, one-dimensional set

of points bounding the patch (and similarly for a block in space). In practice, how-

ever, a metric is almost automatically introduced by parameterization of the bound-

ing curve. This is particularly true for the algebraic grid generation procedures on

which we will focus. Control through piecewise specification of the boundaries with

independent scaling and a still arbitrary interpolation in the interior of the domain

is possible, but has a limited range. Hence, items (1) and (2) are not completely

separable, although they are conceptually unrelated.

(4c): The phrasing of this item is intentionally left undefined with respect to

the expression 'for all points on the boundary'. We may choose to specify boundary

conditions for lattice points on the boundary only (i.e., after discretization), or we

may define a (piecewise) continuous boundary-condition function using the param-

eterization of the boundary. In the latter case we would first have to determine the

value of the parameter at a discrete point before the boundary condition can be

evaluated. The discrete approach has the advantage that no information needs to

FOUNDATIONS 28

be defined for points that are not on the lattice anyway. The continuous approach

has the advantage that grid refinement can be treated very naturally, and it is the

one that is being used in this study.

FOUNDATIONS 29

RtSERVOIR

Figure 2.1: Physical problem with interior boundary

Physical Boundary Physical Boundary

:,*

r
Subdomain

I

Subdomain 5

Consistent Inconsistent

Figure 2.2: Geometrically consistent and inconsistent unions of subdomains

Chapter 3

DATA STRUCTURES FOR COMPOSITE GRIDS

3.1 Introduction

In the previous chapter we discussed the principles of numerical problem definition

and solution on a single and a composite grid. When it comes to implementation,

we have to worry about how to represent the problem in a computer. This chapter

deals exclusively with problem representation, i.e., with the data structures needed

to formulate a composite-grid problem.

A separate program -- called M*E*S*H, described in Chapter 5-- is used to cre-

ate a composite grid. This program writes out a composite-grid data file that serves

as input to a computational program that calculates a solution on the composite

grid. The data file contains a high-level description of a composite grid, or rather,

a set of instructions which is used by the computational program to construct the

composite grid. Because the description is of such a high level, it is easy to change

the shape, size, or definition of a composite-grid with few changes in the data file.

This is important at a point where M*E*S*H has not yet been implemented and

where the data file is created manually, which is the case at the time this report is

being written.

The remainder of this chapter is as follows: In Section 2 the elementary descrip-

tors of a composite-grid are introduced. We limit ourselves to the kinds of problems

mentioned in the last section of the preceding chapter, and to two space dimensions.

Most descriptors are very fundamental, and are applicable, in principle, to any nu-

merical solution procedure for boundary-value problems. In Section 3 generic data

structures that are used to define the composite-grid problem are discussed. In

Section 4 the definitions of the data structures used in this project are given. Most

30

DATA STRUCTURES 31

of these data structures will already have been introduced in concept in Section 2.

Others, in particular the representation of curves in terms of fundamental curves

plus an affine coordinate transformation, are discussed in detail in Appendix B.

3.2 Composite-Grid Concepts

Composite-grid calculations are complex operations. As we will see in this section,

an unexpectedly large number of new constructs needs to be introduced to provide

an environment general enough for our applications. The reader should keep in

mind that the distinctions between these constructs exist for single-grid compu-

tations as well. However, in the single-grid case it is possible to combine certain

functionally different components without ambiguity or confusion; this cannot be

done for composite grids. The merging of functions typically takes place implicitly,

without the numerical analyst realizing it (nor needing to realize it).

When creating a composite grid in an interactive way (our approach), it is

natural to start with a screen on which the contours of the physical domain Q are

drawn. Because we only allow geometrically consistent unions of subdomains, that

contour will be filled precisely by component grids. Thus, in a set-theoretic sense we

may say: 8(U)ilfk) = 8Q, if there are K component grids. Functionally, however,

this is not accurate. Component grids are separate entities, with independently

specified geometries and boundary conditions. One might describe the geometrical

division of the domain Q1 into subdomains as a mapping D from the Cartesian

product (not the union!) of the A subdomains into the physical domain, so D

rl'k= f2k -+ Q. Ambivalence will only occur if we try to project '=1 £k onto S1, that

is, by looking at the screen with the component grids (or parts of them) drawn on

top of each other. In that case the distinct concepts of physical and computational

space are mixed up in one picture.

To avoid this dilemma, we will define the initial stage of the grid generation

process as a series of operations in physical space. The segments of &Q that are

parameterized by a single contiguous interval of a parameter a will be called curves.

A curve is the graph of a vector function c of one variable s, so c : s --+ c(s). We

DATA STRUCTURES 32

will assume that c is continuous, although this is not strictly necessary. It follows

that curves are continuous lines on the screen. Using the contour of the physical

domain as a starting point we can add more curves in physical space, that is, draw

more lines on the screen (how new curves are generated will be discussed in Chapter

4 and Appendix B). These lines have the same status as the ones making up the

contour and are, in that sense, indistinguishable from them. In short, every line

drawn in physical space is called a curve, independent of its specific function; curves

are strictly geometrical entities. Several curves may be designated as a unit for the

purpose of manipulating them as a single entity (for example to make a copy of

them elsewhere on the screen). Upon copying, all components of a unit receive new

names.

The relation between curves and the physical problem is established by the in-
troduction of subcurves. Every curve consists of one or more bordering subcurves,

which are contiguous intervals in the parameter describing the curve, tied to exactly

one of the following physical roles: physical boundary, periodic boundary, or aux-

iliary. The first two roles are obviously derived from the original problem, whereas
the third role is reserved for those curves, or parts of curves, that are not on the

boundary, & , of the problem domain. Curves and subcurves together completely

define the physical problem =d set the stage for the generation of a composite grid.

So far, all we have done is draw some lines in physical space (i.e., on the screen)

and hand out roles to segments of these lines. Now we will take the step to the

subdomain spaces by defining a (grid) side as a set of entire subcurves, adjacent

in physical space, with one global, continuous parameterization.

Five remarks readily apply:

* subcurves comprising one side need not be part of the same curve;

" one subcurve may appear in the definition of several sides (this may happen

when grids overlap);

" sides do not have roles; they are the equivalent in subdomain space of curves

in physical space, which means they are strictly geometrical entities;

DATA STRUCTURES 33

" the parameterization of a side is derived directly from the parameterizations

of the composing subcurves; we will only use linear rescalings (shifts and

multiplications of scalar parameters) of the latter to arrive at the former. A

logical default procedure to parameterize subcurves within sides is to make

the curve speed continuous across boundaries between subcurves (curve speed

is defined as the increment in the arc length along the curve per unit of

parameter);

" we might have to divide a semantically consistent single subcurve (i.e., a

subcurve with one physical role) into several new subcurves if we want to

control the size and the shape of a grid, because only complete subcurves are

allowed as constituents of grid sides.

The dual role of subcurves is apparent from the above, although there is no danger

of ambiguity. In fact, the duality is intentional, as it enables us to connect the

physical problem to the numerical problem.

Analogous to the definition of subcurves in physical space, we define subsides

as contiguous, nonoverlapping intervals in the parameter describing the side, tied

to exactly one of the following subdomain roles: physical boundary, periodic

boundary, reentrant boundary, interpolation boundary, or none. The consequences

of this definition deserve careful consideration.

The first two roles essentially establish the physical validity of the set of problems

on the subdomains. As mentioned in Chapter 2, we only allow strongly functionally

consistent boundary conditions, which means that physical boundary conditions

are applied at all grid points that lie on the boundary of the physical domain.

By designating a certain section of a grid side as a physical boundary, we can

automatically retrieve, through the parameterizations of the pertinent side and

curve, the applicable boundary conditions. For periodic boundary conditions a

slight problem arises, as a target point gets its information from a (different) point

in the physical domain, which might be contained in more than one component grid.

In that case, which is similar to the case of interpolation boundaries, additional

information is needed. In fact, interpolation boundary conditions can be viewed as

DATA STRUCTURES 34

special cases of periodic boundary conditions, if the latter are imposed on different

grids.

Reentrant and interpolation boundaries are strictly computational entities. A

reentrant boundary arises when a branch cut is introduced in a grid that connects

to itself in physical space, in which case no physical boundary is present. Reentrant

boundaries can always be avoided by splitting the self-connected grid into several

grids. This reduces reentrant boundaries to simple interpolation boundaries.

Interpolation boundaries show up when two or more component grids overlap

-- or just touch- and need to exchange information.

Role none simply means that no role has been explicitly assigned (the default

type). Eventually, every subside must have a nontrivial subdomain role.

Things are now pretty much settled; curves are lines drawn on the screen, which

are dissected into subcurves that perform physical roles and figure as building blocks

for grid sides. Grid sides, then, are divided into subsides that have subdomain roles.

The only thing left is to forge the grid sides into grids and to define a global iteration

process on the composite grid. There is a catch, however.

As we perform a complete walk through the set of subdomains, i.e., as we carry

out one global iteration, the boundary conditions on periodic and interpolation

boundaries can be, and in general will be, different each time we visit the same

grid. The subdomain roles of these boundaries obviously do not change, but the

grids from which information is received (donors), will. A way to express this is to

say that the numerical roles of parts of subsides will be different every time a grid

is visited in a global iteration. A numerical role is composed of a subdomain role

plus an identification of the donor grids (note: several grids may donate data to one

point; it is then passed through some kind of filter). For convenience, a third piece of

information will be added to the numerical role, namely the geometrical connection

with the donor grid(s), which can assume the values touching or overlapping.

For a subside on 8Ql there is no difference between its numerical, subdomain.

and physical role, as there is no donor. By definition, a reentrant boundary recei'es

information from the grid it is on, and touches itself, so that explicit specification

of a numerical role is redundant. Consequently htbe only subsides with externally

DATA STRUCTURES 35

defined numerical roles are periodic and interpolation boundaries.

It follows that one subside may have several different numerical roles. Moreover,

these roles can change with every visit to the particular grid in one global iteration.

We might propose yet another subdivision, say of subsides into numerical subsides,

which all have a single numerical role. A new subdivision would then be defined

for every occurrence of a grid in a sequence of visits, giving the numerical subsides

a dynamic appearance.

We will take a slightly different approach, though, which avoids the introduction

of a new level of complexity, and which is more static. The idea is to chop up subsides

into coherent parts which receive information from one or more other grids. These

parts are still called subsides, and a list of possible donor grids, plus the appropriate

geometrical connections, is supplied with them (this list need not be exhaustive).

The mechanism to single out the actual donor grid(s) from this list will be provided

as an algorithm contained in the computational program, rather than as an explicit

enumeration. Evil-spirited (or pragmatic!) minds may still want to specify expressly

which grid(s) on the list will be active, for example to be sure that a particular grid

indeed acts as a donor. This deterministic feature may be incorporated in the

algorithm, as long as the identification of the subside and the place of the grid

in the grid sequence (global iteration) are passed to it as parameters. The basic

idea behind all this remains that at any given time all the points that lie on a

certain subside will receive information from one donor grid only, or from a fixed

combination of them.

Boundary conditions themselves (B and g in Chapter 2) may also be determined

by an automatic procedure for all subsides other than those on 0.

One special kind of structure, which might be categorized as "an interpolation

subside of the second kind", has not yet been discussed. It concerns additional

interior (shadow) interpolation points that are used in certain applications fSKAS7J

in which extra smoothness of interpolated data is needed (see Fig. 3.1). These

structures will not be incorporated into the grid-generation system, although they

may very well be used in conjunction with it. A pragmatic reason for this is that it

would be rather tedious for a user to create explicitly all the subsides and related

DATA STRUCTURES 36

constructs that define these shadow points, on top of defining the primary contours

of the grids. Moreover, the location of the points (which generally lie on coordinate

lines in the interior of a grid) is fixed by the mesh size and the interpolation proce-

dure used to construct a curvilinear coordinate system on the grid, and is usually

not known in advance.

A more fundamental reason for not defining the shadow points in the grid gen-

eration system is that their role is to smooth the interpolated data in the direction

normal to the grid boundary. Therefore, shadow points in the interior of the grid

should be related as closely as possible to the adjacent boundary points (same type

and source of interpolated data). This is done most easily and consistently by as-

signing to an interior point the numerical role of the corresponding point on the

boundary. This task can be performed by the computational program and need not

be contained in the grid generation program. There should be tools available in

the grid generation program that enable the user to define grids without too much

effort for which the above strategy works (e.g., diagnostics that signal if the amount

of overlap between grids is not sufficient).

Summary

In this last part of the section we will summarize the main new constructs that have

been introduced to describe a composite grid.

Curve: A parameterized line segment in physical space, demarcating the physical

problem domain, or serving as a tool to dissect the domain.

Subcurve: A section of a curve, which has a specific physical role (boundary con-

dition) if it is on the problem domain boundary.

Side: A complete side of a grid, composed of a number of adjacent subcurves.

Subside: A section of a side with a specific numerical role.

Curves and subcurves are entities that live in physical space. They have nothing

to do, in principle, with the numerical problem, but define the physical problem in

DATA STRUCTUR.ES 37

terms of the geometry (curves) Lnd physical boundary conditions (subcurves). Sides

and subsides are inhabitants of computational space. Their only connection with

physical space is through the construction of sides using suhcUrves. They define

the numerical problem in terms of geometry (sides) and the numerical boundary

conditions (subsides).

The following table characterizes the functions that are fulfilled by the above-

mentioned constructs.

Table 3.1: Functions of composite-grid components

SPACE
physical computational

geometry curve side
ROLE [oundzary subcurve subside

conditions

An illustration of the description of a problem using a two-component composite

grid is shown in Fig. 3.2. Although the geometry is very simple, all four elements

in Table 3.1 are needed, and no two sets of elements exactly coincide. Note that

subcurve b occurs in the definitions of two different sides (tick marks indicate the

subcurves comprising a grid side).

3.3 Data Structures

The preliminary work providing the foundation for the data structures to describe a

composite grid is now completed. As mentioned before, the structures presented in

this section will exist somewhere on a file produced by the grid-generation program

M*E*S*H. Consequently, storage is sequential and the program reading the file

must be informed explicitly when new structures are encountered. This can be

accomplished by writing the reserved word structure: at the beginning of each

line where a new entity is defined, followed by the specific type of the entity. When

a particular structure can occur more than once within a larger structure, say curves

within a composite grid, the need arises to distinguish the different instances of that

structure by assigning labels. For this purpose we write the reserved word name:,

DATA STRUCTURES 38

followed by the particular name of the structure. A header for a curve in a file

containing several curves may read as follows:

structure: curve name: french.

In Fortran77 the only 'higher-level' type of data structure is that of 'array'.

Hence, the only reasonable way to store several instances of a certain type of struc-

ture is by letting names correspond to indices in an array. For efficiency reasons we

omit the assignment of names in the current implementation altogether and read

in structures sequentially in subsequent array positions. This does away with the

necessity of keeping reference tables. Now we have to know in advance how many

structures of the same type are going to be read, so this number becomes part of

the data structures.

In addition to defining basic entities like grids and curves, there is a need to

combine several of these atomic parts into bigger functional units. For this purpose

the concept of objects is introduced. Objects consist of grids, curves, and other

objects (and perhaps entities contained in the graphic aids category -see Appendix

B). Any of these elements may belong to only one object. Thus, a strictly hierarchi-

cal organization is obtained. Grids and curves in an object that are not contained

in deeper nestings of objects are called radical with respect to their containing ob-

ject. For consistency reasons, all grids and curves at the base level of the composite

grid that are not contained in user-defined objects will be considered radical with

respect to a root-object. This root-object is created by the grid-generation system

and contains the radical structures plus all objects, defined at the base level. Its

syntax is that of a regular object.

Objects exist to make it easy to perform operations on sets of functionally co-

herent structures: objects may be moved or copied. In the latter case a new object

name must be supplied. Difficulties would arise if an object to be copied contains

a grid, but not all the curves that are referenced in the grid. This situation will

be precluded: an object must be completely self-contained, which means that no

references to external radicals or objects may occur.

Several levels of sophistication are conceivable in the definition of objects. They

DATA STRUCTURES 39

may be used as aliases for whole groups of elementary structures, which are copied

as a unit when a copy of the object is made ('hard copy'). They may also serve as

templates, in which case only references to previously defined structures are created,

supplemented with certain changes in the parameters of these more basic structures.

Then any copy of the object changes as the original changes ('soft copy'). 'Bard'

and 'soft'-copying of objects may even be combined. In the currently envisioned

implementation only hard-copying is allowed (all grids and curves in the composite

grid really exist and are not hidden in references).

Objects are a convenient device for the grid generator; they define a composite

grid almost completely, making the structures grid-set and curve-set (defined below)

redundant with respect to the grid generation program. On the other hand, objects

have no real impact on the data structures that are used by the computational

program, which does not care about higher levels of structured information.

As a result of the differing needs of the computational program and the grid-

generation program, it makes sense to create separate data files for each. Typically,

a complete composite grid will be generated in several sessions, between which only

intermediate data files, to be used by M*E*S*H, are written. Only when the grid

is finished will we want to write the input file for the computational program. In

the following subsection, definitions of data structures occurring in both files are

given. The formats of corresponding structures in the two files may differ slightly.

The ones described here refer to the data structures in the file that is read by the

computational program.

Definitions

It makes sense to view a complete composite grid as one big record, comprised of

several smaller records of variable length. They are: global-iteration, object,

grid-set, curve-set, and graphic-aids. Some of these records in turn are di-

vided into yet smaller records. Nested records like this were called structures

above. The following is a list of the structures (and their respective components)

that make up a composite grid. It is understood that every multiply-occurring

DATA STRUCTURES 40

structure has a unique identifier (a name, or index) attached to it, so no more

explicit mention will be made of that.

A complete example of a data file describing a composite-grid problem for two

overlapping grids is presented in Appendix A. Comments are added to make the

file more readable; these are ignored by the computational program. The data

structures defined below axe most easily understood when studied together with

the example.

structure: composite-grid

Computational program Grid generation program

- Structure: curve-set - Structure: object

- Structure: grid-set

- Structure: global-iteration - Structure: global-iteration

- Structure: graphic-aids

structure: curve-set

e The number of curves used to describe the composite grid

* A list of all the structures: curve

structure: grid-set

* The type of inter-grid communication procedure (see Chapters 6 and 8)

* The number of component grids used to describe the composite grid

* A list of all the structures: grid

structure: object

" The number of curves contained in the object

" A list of the names (indices) of all the curves contained in the object

" The number of grids contained in the object

DATA STRUCTURES 41

" A list of the names (indices) of all the grids contained in the object

" The number of (sub-)objects contained in the object

" A list of all these contained structures: object

(Note: when an object is copied or moved, the user may change parame-

ters of the elementary components (curves and grids), and may supply an

affine transformation (see below) which relocates/reshapes the object in space.

These parameter changes and/or transformations are incorporated explicitly

in the definitions of the elementary components, and are not stored as global

changes to the object. Thence, as the original object changes, the copy stays

the same)

structure: global-iteration

• An indicator stating whether the global iteration is defined explicitly in terms

of a list of grids to be visited sequentially (status: manual), or by the use of

a traversal algorithm (status: automatic)

- If status is manual: the length of the chain of grids to be traversed, plus

the actual ordered list of grids,

- If status is automatic: an identifier specifying which algorithm will be

applied.

structure: graphic-aids

* TO BE DEFINED

Note: graphic-aids consist of auxiliary information that is useful in building

a composite grid, but that is not really a part of it.

Examples are:

- Command status, saved from a previous grid generation session,

- Magnification factor and window coordinates in a diagnostic session,

DATA STRUCTURES 42

- Marked points, defined by the user as reference points, that are not part

of any other structure (e.g., center of curvature, midpoint).

structure: curve

e An indicator showing whether the curve is user-defined or standard

- If user-defined: the name (index) of the corresponding Fortran functions
on a separate Fortran file (usrfun.f),

- If standard: the name (index) of the corresponding predefined Fortran

functions on a separate Fortran file (stdfun. .), plus a list of parameters

fixing the functions, preceded by the length of the list.

Note: Four parameterized functions are required for every curve, that is:

z(s), 3(a), and the derivatives z,(s), and y,(s), where s is the parameter on

the curve. They are all uniquely identified by one common name (index). The

number of Fortran functions required to describe a curve geometrically need

not be four, as we may choose to combine several of the function evaluations

for efficiency reasons. In the current implementation a subroutine is defined

which returns four arguments. A switch is built in, so that arguments are not

computed when they are not needed. Whenever new standard functions or

user-defined functions are added to the existing libraries, the files stdfun, f

and usrfun . f must be recompiled and linked

* The parameters of the aflne transformation i = Pr+q, which maps points r =

(.) into F = () and thus allows us to shape new curves based on previously
defined Fortran functions. P is a (2x2)-matrix and q is a (2xl)-column vector.

Together they are defined by six constants. The original curve (default) is

regained by setting P equal to the identity operator I, and by setting the

offset vector q equal to 0, so we need not introduce a special indicator to

mark this curve

* The number of subcurves that make up the curve

* A list of all the pertinent structures: subcurve

DATA STRUCTURES 43

structure: subcurve

" The physical role of the subcurve

- If physical boundary: the name (index) of the user-defined Fortran func-

tion on a separate boundary-condition file (bcfun.f). Note: must be

compatible with the parameterization of the curve

- If periodic boundary: the parameters describing the aiene transformation

that relates the boundary to the corresponding target curve in physical

space

" The parameter interval, 6s, it occupies within the curve

structure: grid

e An indicator showing whether or not the grid is complete and has been defined

in a consistent way

- If incomplete or inconsistent: a checklist of the status of all parts of the

grid-definition process

* The geometrical type of the grid, i.e., warped triangular, quadrilateral, hexag-

onal, etc.

* The number of sides defined so far (at most the maximum number of sides

pertaining to the geometrical type of the grid)

* A list of all the structures: side of the grid, plus their respective relative

locations (for warped quadrilaterals we may use the locations bottom, top,

left, or right; in the current implementation, only four-sided grids are allowed.

which are read in the order defined above)

* The number of mesh cells in the (two) coordinate directions

* Sets of stretching and shrinking factors in the two coordinate directions (by

default no stretching is applied)

DATA STRUCTURES 44

* The type of mapping used to interpolate coordinates in the interior of the grid

from the parameterizations of the sides

- If transfinite interpolation: the order and type of the interpolation (ini-

tially, only Coons Patch [FAUS1] will be provided)

structure: side

9 The number of subcurves comprising the side

* A list of the names (indices) of all the subcurves, plus for every subcurve the

parameter interval bz it occupies within the side, the name (index) of the

curve on which it lies, and the sequence number of the subcurve within the

curve

e The number of subsides comprising the side

e A list of all the pertinent structures: subside

structure: subside

" The numerical role of the subside. If periodic or In7terpolation:

- The number of candidate donor grids

- A list of the names of all the candidate donor grids, plus for every donor

the geometrical connection with the receiving grid side (overlapping or

touching)

" The parameter interval, Sz, it occupies within the side

DATA STRUCTURES 45

------------------ Shadow points

Figure 3.1: Interior (shadow) interpolation points for extra smoothness

PHYSICAL DOMAIN COMPLITAflONAL DOMAIN

~'zfi!~clrobem,

Curves ISides
I a 'b tbc

Subcurves ISubsides

Figure 3.2: Composite-grid concepts for simple two-grid geometry

Chapter 4

M*E*S*H; CONSTRUCTION OF A COMPOSITE GRID

4.1 Introduction

The previous chapter on data structures may have left the reader puzzled about

how to input the items needed to specify a composite grid. It takes considerable

effort to define a composite-grid problem consistently, even in the simple case given

in Appendix A. The problem is that we have to perform many tasks by hand, such

as constructing intersection points between curves, specifying geometric transfor-

mations numerically, remembering which subcurve is on which curve, etc. These

things, which are hard for the user, are simple for a computer. What a human is

good at, is giving high-level commands and creating and manipulating spatial ob-

jects visually and conceptually, whereas computers handle the computing and data

management efficiently.

To combine these two qualities effectively, a visual, interactive system called

M*E*S*H (Mesh Engineering System for Hydrodynamics), has been conceived to

aid the user in specifying a composite grid. Whereas a lot was learned from work by

researchers like Eiseman [EIS79], Chesshire et al. [CHE86], [BRO89A], [BROS9B>.

and Thompson [TH087], none of their systems was deemed sufficiently fle.'able in

terms of user interaction, graphical tools, or data structures.

Existing geometrical-design packages also cannot do the job, as their data struc-

tures are of a different type and are meant for design and not analysis, which makes

them hard to use as graphical assistance systems given a geometrical description

of the physical problem boundary. Moreover, their way of representing geometrical

objects is geared towards shape, and does not care about the way they are 'filled

in', i.e., how lattices are generated in the interiors of grid patches. The latter is

46

M*E*S*H 47

important for algebraic grid-generation procedures, which have our prime attention.

The reasons for choosing algebraic grid-generation algorithms are several:

" Simple, explicit formulas define mappings from computational to physical

space. This makes it easy to calculate the coordinates of a point in com-

putational space on one grid, given its computational coordinates on an-

other, an operation that is of vital importance on multiple grids. In the

current composite-grid solution program, the public-domain MINPACK rou-

tine hybrj I (a root-finder for systems of nonlinear equations) is used to invert

coordinate mappings,

* Algebraic methods are trivial to implement, and, for domains that are not
too contorted, robust. As one of the important goals of the composite-grid

strategy is to create systems of grids, each of which has a simple shape, good

grids can be guaranteed. An important class of algebraic grid-generation

methods is defined through transfinite interpolation [THO85], the simplest

example of which is the Coons Patch JFAUS1). Coons Patch is the currently

implemented method.

A disadvantage of algebraic grid generators is that they generally do not yield

orthogonal grids. However, loss of orthogonality is not a real problem, as we can

construct grids with such flexibility that near-orthogonal grid line intersection can

almost always be achieved.

Finally, it should be emphasized that, although algebraic grid generation suits

our purpose and is convenient, it is not essential that we use it, and the design of

M*E*S*H does not depend on it.

4.2 M*E*S*H Design Philosophy

The practical problem facing the engineer who wants to employ a composite grid for

solving fluid-flow problems is the following. Given a (parametric) description of the

contour of the physical domain of interest plus the pertinent boundary conditions.

how do I divide the domain into reasonable subdomains and store information rc-
garding curves, subcurves, grids, grid sides, subsides in the easiest fashion possible?

M*E*S*H 48

In order to unburden the user as much as possible without sacrificing the ex-

pert eye, M*E*S*H should be equipped with many tools that enable reusage of

information in flexible ways. In addition, M*E*S*H should provide the user with a

sufficiently large arsenal of standard tools for composing grid systems.

For example, a simple way of constructing a composite grid for the kidney-shaped

domain shown in Fig. 4.1a would be to define a second curve that is a COPY of

the contour, SHRUNK towards a geometrical center in the interior of the kidney

(Fig. 4.1b). After that, the standard tool PERPENDICULAR could be invoked to

cut up the 'collar' between contour and shrunk image (Fig. 4.1c), and, finally, a

plain, rectangular grid could be created to cover the hole in the middle by drawing

straight lines using the STRAIGHT facility (Fig. 4.1d). Should we want to create a

second kidney for completeness, the REFLECT option would do the job adequately

with only few key strokes -or mouse clicks- (Fig. 4.2). The latter is an example of

a high-level command, as it creates copies of all the components contained in an

object.

Some simple operational rules that were found important when examining other

grid generation systems (most notably, they were found violated) are:

* One should be able to store and retrieve incomplete information. For example,

one might first want to generate all grid patches without specifying the number

of grid cells in both directions,

9 It should be possible to retrieve information numerically that has been stored.

such as the coordinates of the corner point just defined,

e It should be possible to end a composite-grid definition session at any inter-

mediate stage, which means that the status of the session should be saved.

All these requirements can be met if a composite grid is viewed simply as a data

structure that is created and filled in dynaiically.

M*E*S*H 49

4.3 User Interface

In this section the way M*E*S*H looks to the outside world is presented, including

some basic rules for manipulating information. Although the system does not exist

physically at the time of this writing, its output is already being mimicked and used

for composite-grid computations. Hence, M*E*S*H is not just wishful thinking.

M*E*S*H is a hybrid system which is in part command-driven, and in part

question-driven. The following function types are available to manipulate grid-

related data:

Modes: A mode is an environment which is entered or exited explicitly. The mode

is entered by simply typing its name, or selecting it from a menu. Exiting
is established by typing EXIT. Entering a mode leaves the control with the

user (command-driven). There are no parameters. There may be a prologue

and/or an epilogue in which certain questions should be answered (such as

what the target construct will be). The names of MODES will be printed in

roman capital letters.

Tools: A tool is invoked to enter a question/answer session with the system if a

certain fixed format or order of actions is desired. The session is started by
typing the name of the tool. Termination is done by the system. which then

returns control to the calling mode. There are no parameters. Questions may

be asked in terms of menus. The names of TOOLS will be printed in slanted

capital letters.

Commands: A command is issued to bring about a certain effect immediately. A
fixed number of parameters is supplied with the command. Upon execution of

the command the control is returned to the calling mode; the system is ready

to accept new commands or other interactions. The names of COM1ANDS -ill

be printed in typewriter-style capital letters

For clarity a certain hierarchy is imposed on the system, similar to the one for

the storage and linking of directories under a UNIX operating system. The modes

M*E*S*H 50

-like directories- are arranged in a tree structure, with the tools and commands

-like programs- embedded in the branches. All functions are local, that is, they

pertain to the particular mode in which they are invoked, with the exception of the

diagnostic mode SHOW and the screen operation tool ZOOM. These can be used

at every point in the system. Note: every mode or tool has a HELP option.

In a powerful graphics-assisted system several ways should exist to input data.

Mouse: One can pick points on the screen or identify entities such as curves and

grids by clicking them. Other functions are: find the point on a curve closest

to a clicked point on the screen, define a window -for instance for zooming-

by clicking the corners of a box, drag a curve across the screen (translation

and rotation), etc.

Keyboard: Alphanumerical values are inputted through the key pad (unless a stored

datum is reused, which can also be recalled by identifying its location in a

(local) storage bin -.5cratch pad- by the mouse). Examples of alphanumerical

data are: coordinates of a point, name of a grid, number of mesh cells, etc.

Combination: Certain data are inputted most conveniently by a combination of

(alpha)numerical values and locations on the screen. One may construct a

line perpendicular to a curve, emanating from a point on that curve (defined

by the mouse), and extending by a certain length (inputted numerically).

It should be possible to specify mouse-generated information through the key-

board as well. Conversely, it should also be possible to input most of the keyboard

data by using the mouse. However, complete symmetry should not be attempted.

since the creation of names or the specification of a number of grid cells through

mouse action would be rather awkward.

A note on menus: In many cases it will be appropriate to present the user with

a menu of options. Selection of an option is possible either by mouse or through

the keyboard. In case of a tool one must choose an option from the menu if it is

present. In case of a mode one may ignore the menu.

M*E*S*H 51

As the description of all the system functions and the way they fit together is

rather lengthy, the reader is referred to Appendix B for a detailed account.

M*E*S*H 52

a: Draw contour using b: COPY and SHRINK
CURVE

c: Cut up collar using d: Create center patch

PERPENDICULAR using STRAIGHT

Figure 4.1: Generation of a sample composite grid

Figure 4.2: Duplicate whole structure using REFLECT

Chapter 5

AN ADAPTIVE-COMPOSITE-GRID SCENARIO

5.1 Introduction

The ultimate goal of this project is to effect the synthesis of composite-grid tech-

niques and patched adaptive mesh refinement. That means using multiple simply-

shaped grids to tackle the geometrical complexity of a problem, and adaptively

patching refined grids on this composite grid to handle solution complexity.

Although implementation of the adaptive method is beyond the scope of this

work, a study (largely two-dimensional) has been made of the feasibility of such a

synthesis. The results are presented in this chapter.

In previous chapters the foundation was laid for the construction and implemen-

tation of composite grids for complex domains. It was judged that the generation of

a composite grid is too formidable a task to be carried out automatically. Entirely

manual grid generation. on the other hand, would put too much burden on the user.

It was concluded that an interactive system which takes maxdmum advantage of the

computing power of a machine and of the geometrical insight of the human should

be developed.

The attractiveness of this set-up largely disappears when the adaptive-grid con-

cept is added. A cornerstone of solution-adaptive mesh refinement is that new grids

are created without user intervention. For steady-state problems one might allow

some user monitoring during the computational process, but time-dependent prob-

lems necessitate a non-interactive environment (except for some simple options.

such as: stop computing, or let me look at the solution). The aim of this investiga-

tion is to establish truly automatic solution-adaptive grid refinement on composite

grids.

53

ADAPTIVE SCENARIO 54

In the next two sections we will describe two ways of achieving this. The first

one is flawed. Why discuss it? The answer is: Because it is an obvious way to

go, and the reasons for its failure are somewhat subtle. The second one is more

elegant and effective. Unfortunately, the second method requires computer science

techniques that are somewhat involved and nonstandard in the field of numerical

computations. However, the extra computational expense of the second method

of generating refined grids is easily offset by the savings obtained when computing

solutions on these refinements. As fewer refinements are generated, the cost of

communicating between these grids goes down drastically.

5.2 Componentwise Grid Refinement

A straightforward way of constructing adaptive refinements on composite grids is

based on the approach taken by Berger [BER82] and Caruso [CAR85]. The idea is

to apply refinement to individual component grids without reference to the other

grids. These refinements would be created in computational space, so that we only

have to deal with rectangular regions. This problem has already been tackled by

the abovementioned authors. It should be pointed out here that refinements are not

generally aligned with the component grids. If we insist on alignment, the strategy

may perform poorly for diagonally oriented flow phenomena. These require either

a disproportionate number of aligned refinements, which slows down convergence

due to the iterative character of the communication processes between them (see

Chapter 6), or result in a very inefficient use of fine-grid area. In fact, the whole

philosophy of rotated refinements for Cartesian grids, laid down by Berger. applies

to curved component grids when viewed in the computational domain.

Precautions have to be taken to prevent refined grids from crossing the bound-

aries of the component grids. Thus, the cutting, shrinking, and folding techniques

described by Caruso should be applied if refinements are to be rotated rectangles

(rotangle.4) in computational space. The typical example that he gives is that of a

shear layer. oriented diagonally across the domain. To cover the high-error shear-

layer region with refinements takes at least three rotangles (see Fig. 5.1).

ADAPTIVE SCENARIO 55

Great advantages of the componentwise scheme are modularity and geometrical

simplicity. The only new element in the method is the furnishing of boundary condi-

tions for refined grids touching component-grid boundaries. The following strategy

may be followed: Masking arrays are created for every level of refinement, which

flag points that are contained in deeper nestings of refinement. Whenever bound-

ary conditions are needed from grid B for a point X in grid A, the B-coordinates

of X are computed. Using the masking arrays, the highest level of refinement in B

containing X is determined. Boundary conditions for X in A are obtained from this

grid.

A drawback of this approach for composite grids is inefficiency in terms of num-

ber of refinements generated. Error zones, contiguous in physical space, but strad-

dling component grids, would give rise to several -perhaps many- separate re-

finements within the individual components. This situation is sketched in Fig. 5.2.

The thick solid line indicating a flow feature causing large errors cuts across all

component grids. When the three component grids are mapped to their respective

computational spaces, application of Caruso's technique in every such space would

require at least three rotangles in each, for a total of nine. To cover one single error

zone, nine refinements are created! This is not very efficient.

In addition, the patches near the grid boundaries that are grid-aligned -and

hence not aligned with the flow phenomenon causing the large errors- may generate

spurious waves, reflections, or numerical diffusion.

A more subtle, but equally harmful, drawback of this approach is the following.

For safety and efficiency reasons one often introduces buffer zones around points of

large error. The buffer zones serve to ensure that boundary conditions for the refined

grids, obtained from the underlying coarse grid, are evaluated far away enough from

the error zones to guarantee accuracy. Larger buffer zones lead to reduced update

frequency of the refinements, but also to more work on the refinements. Obviously.

an optimum buffer region of nonzero size exists. Should a region of large error border

a component grid, but not project beyond that edge, then special precautions need

to be taken. It is possible that the component gid on the other side of the interface

does not contain any points with large error and therefore does not 'feel' the need to

ADAPTIVE SCENARIO 56

refine; consequently, no need for a buffer zone is perceived, although one is actually

necessary. This dangerous situation, which is likely to occur in situations where

unsteady problems are solved in which error zones travel through the field, stems

from the fact that the component grids are treated independently. Apparently, a

stronger intertwinement of grids is needed than has been outlined above.

5.3 Component-Independent Grid Refinement

A more appropriate approach to adaptive grid refinement on composite grids is

characterized by globalness and independence. A scenario will be described in more

detail after the following summary.

I. Construct a composite grid as described in Chapter 4 (Fig. 5.3).

2. Compute a solution on the composite grid, estimate the error, and mark the

.ugh-error points.

C 11 the error is large almost everywhere, refine all grids and restart (Fig. 5.4).

4. Construct a Cartesian reference grid that covers the entire physical domain

(Fig. 5.5).

5. Mark all error points on this reference grid (Fig. 5.5).

6. Cluster the error points on the reference grid into coherent groups.

7. Construct boundaries of refined grids covering the error clusters.

S. Compute the mesh sizes of the refined grids.

9. Construct a fence demarcating a safety zone around the physical boundaries

of the original domain (Fig. 5.6).

10. Identify refined grids that penetrate the fence into the safety zone (Fig. 5.9).

11. Divide refined grids that violate the fence into interior points and safety-

zone points. For the safety zone, define grid patches that are aligned (in

computational space) with the composite-grid components.

ADAPTIVE SCENARIO 57

12. Compute a solution on the whole set of refined grids at a certain level of

refinement.

13. Repeat above recursively.

Now we give an in-depth description of the scenario.

Step 1 Construct composite grid

Create a composite grid covering the physical domain (see Fig. 5.3). This

is done with the interactive system M*E*S*H, and by a postprocessing

program that converts the continuous output of M*E*S*H into discrete data

(this conversion program already exists for 2D problems). For nonadaptive
composite-grid calculations, mesh sizes must be chosen such that the desired

accuracy is reached without refinement; substantial coordinate stretching

may be required.

Step 2 Estimate error

Compute the error (truncation or global error) on all component grids using

the Richardson extrapolation technique. Flag all points that exceed the

error threshold.

Step 3 Decide on global refinement

When adaptive-grid strategies are used, the initial composite grid (the base

grid) will not generally provide the desired accuracy everywhere in the do-

main. As adaptive-grid refinement adds overhead, we must try to limit the

number of grid cells contained in the refinements. If too much of the bas,

grid needs refinement, it was too coarse in the first place and it is better
to refine the whole grid (global mesh refinement) and start again. This
statement needs to be quantified. The criterion is the following. Suppose a

set of refined grids that covers all the bad points on the base grid is formed.

The number of points in this set of local refinements is Nf1z,. The number
of points in the grid that would result from global refinement is .,.

If the ratio Nfto, 0t/Nf9 ob~ is too large, then global refinement should bc

ADAPTIVE SCENARIO 58

applied. Computing Nfi ,1 is relatively expensive and should be avoided

if possible. Thus, a two-stage approach is proposed. First, compute the

ratio of the number of bad base grid points, Nb,, to the total number of

base grid points, N. Obviously, (Nf 1 . /Nfy &,) _ (Nbd/N), so if Nbd/N is

large we can decide to apply global mesh refinement. If Nu,/N is below

the threshold, the second stage is entered, consisting of the evaluation of

Nfi1 a, which includes clustering, fitting grids, etc.

If global mesh refinement is chosen, the refinement may be accomplished

straightforwardly (e.g., by doubling the number of mesh cells in all direc-

tions on all component grids), or by using more sophisticated techniques

that single out trouble-making component grids and refine only those (one

might call this cellular adaptive mesh refinement).

Refinement should take place within the base-grid structure, that is, no

new coordinate transformations and/or st. -tchings within component grids

should be introduced (Fig. 5.4).

Global refinement can be repeated until less than the prescribed fraction of

mesh cells is contained in local refinements.

It should be applied at every level of refinement, not just at the base-grid

level.

Note: We do not monitor the fraction of the area that needs refinement

(which would be cumbersome), but the fraction of the number of cells.

This is because the work depends on the number of cells, not on the surface

area (or volume).

Step 4 Construct reference grid

Construct a Cartesian reference grid with square (cubic in 3D) cells (see

Fig. 5.5). It should be large enough to cover the entire physical domain.

This grid will be used for clustering error points. The mesh size is based

on the following considerations:

As the base grid mesh size goes down (classical convergence), the total

number of refined grids may not increase indefinitely, as the overhead

ADAPTIVE SCENARIO 59

would explode and the efficiency would likewise deteriorate. This can

be prevented by setting a minimum size on the cells of the reference

grid.

The reference grid is used to capture the geometrical structure of

the error, which is typically dictated by physical phenomena such as

shocks, recirculation zones, etc. As the mesh size of the base grid de-

creases, this structure becomes less and less dependent on the mesh

size, i.e., its complexity does not increase beyond bound.

Consequently, a heuristic approach will be taken to define the reference-grid

mesh size. A lower bound is dictated by efficiency considerations, whereas

an upper bound can be based on the expected geometrical complexity of

the error.

One can argue about the appropriateness of square mesh cells for the Carte-

sian reference grid. A flow field containing boundary layers may be fitted

with component grids with high cell aspect ratios, but a uniform Carte-

sian grid overlaying this structure will typically have a cell aspect ratio of

one. A clustering routine based on such a square-cell grid would perform

poorly in some parts of the field. Part of this concern can be brushed aside.

though, as refinements will not usually extend all the way to the boundary.

To prevent refinements from protruding beyond the physical boundaries

of the domain, a safety zone will be designated (see Step 9) within which

only component-grid-aligned refinements are allowed. Thus, we need not

worry about clustering bad points inefficiently near solid boundaries, as

these areas get a special treatment. Strongly anisotropic error regions in

the interior of the flow field (such as shocks, free shear layers) remain prone

to inefficient clustering on the reference grid, but this is inevitable: self-

adaptive solution strategies assume no a priori knowledge of the error. so

no precautions can be taken.

ADAPTIVE SCENARIO 60

Step 5 Mark bad points in reference grid

Walk through all the points in every component grid (in an index-lexico-

graphical way) and mark all the cells in the reference grid that contain a

'bad' point. This is done as follows. Define the reference grid as a logical

(Fortran) 2D or 3D reference array. No coordinates need to be stored; we

only need a linear scale factor t which maps the integral indices i of the

reference array to real coordinates z of the reference grid (i.e., x = i * f).

Convert coordinates on the component grid to those of the reference array.

Truncate the (nonintegral) coordinates (i,'".) of the upper right (back)

corner of the grid cell to integer values (i.e., i = [LiJ). The reference array

entry with indices corresponding to these values is marked (see Fig. 5.5).

No search process is needed.

Note: Buffer regions around bad points should be provided before clusters

are formed on the reference grid. An approach which requires more work

initially but might yield smaller refined grids is one in which every point in

a component grid which is close enough to a bad point is flagged. Applying

this method only on the reference grid is simpler, but cruder.

Step 6 Cluster bad points

Cluster bad points on the reference grid. The clustering algorithm. de-

scribed by Berger [BER82], is one of the trickiest of the adaptive-grid strat-

egy, and may require switching back and forth between this step and Step

7 (constructing refinements) until a satisfactory set of local refinements has

been obtained, or global refinement has been applied. The trade-off is be-

tween having the smallest number of refined grids and ha-ving the smallest

number of cells in refined grids that do not really need refinement. A de-

terministic, single-pass approach is used in which bad points are put. in the

same cluster when the summed absolute differences between their indices

in the reference grid are below a certain value.

Step 7 Construct refinements

Construct grid patches covering clusters of bad points. We wkill focus on

ADAPTIVE SCENARIO 61

fitting the dusters with relatively simple shapes. The simplest shape is ob-

viously the (rotated) rectangle. More complicated shapes are grids whose

sides are made up of quadratic curves. These are useful when error zones

exhibit significant curvature, like in bow shocks. Several ways are conceiv-
able for defining these grids, one of which will be described here. Start by

fitting one 'spine' curve to the whole duster, using, for example, a least-

squares fit. Subsequently, the sides along the fitted curve are found by

applying restricted affine transformations (congruence transformations) to

the spine such that all bad points are caught between two trarnformed spinal

curves. The 'lids' at the ends of the spine can be constructed by drawing

straight lines perpendicular to it and by making sure all bad points are
now completely contained in the warped quadrilateral patch. Obviously, a

rectangular grid will be recovered in case of an amoeba-shaped set of bad

points.

The refinements are constructed disregarding the physical boundaries, al-

though they should be fully contained in the reference grid.

Step 8 Determine refinement mesh size

A simple way of arriving at the refined-mesh size is to find the smallest
mesh size h, of the cells contained in the refinement patch and to choose

the cell size to be a specified fraction of h,. This can become prohibitively

expensive when the error exhibits strong anisotropy, which is often the case.

In that case one might want to have refined grid cells with large aspect ra-

tios. The most common sources of strong anisotropy are boundary layers,

free shear lay'-:rs, shocks, contact discontinuities, and flame fronts. The geo-

metrical location of boundary layers is typically quite predictable, and any

sensible composite grid will incorporate grid stretching on component grids

near solid boundaries. Hence, it suffices to refine within the stretched-grid

structure if we want to create stretched refinement cells as well. Step 9

describes how a so-called fence, placed outside the boundary layer, may be

used to effect this type of refinement. The positions of shocks, etc., are

ADAPTIVE SCENARIO 62

usually not known acccurately in advance, so in order to construct refine-

ments with high cell aspect ratios for them we need to determine high error

anisotropy automatically. More sophisticated error-estimation algorithms

than are currently available [BER82], [CAR85 should be employed to de-

tect this occurrence. Due to their very nature, error zones lead to refined

grids that are aligned with them. We can use this alignment property to

pack points tightly across the error zone, while spacing them more widely

along it. Quantitative information on error anisotropy can be obtained by

refining in all coordinate directions independently. Unfortunately, for a re-

finement ratio of r this is drd- times as expensive as the isotropic error

estimation in d-dimensional space (similar to semi-coarsening in multigrid

methods).

Step 9 Construct fence

As was mentioned under Steps 4 and 8, a fence can be erected to signal

the case in which a refined grid patch projects beyond the boundary of

the physical domain, or invades a region in which refinement should be

restricted to the underlying component grid for other reasons. The fence

consists of a strongly connected set of squares (cubes) arranged in such a

way that no curve connecting two points on the physical boundary cuts

through the fence an odd number of times. The selected set of squares

or cubes are taken from an array of cells that together form a Cartesian

grid (the fence grid). See Fig. 5.6. This means that cells that are strongly

connected have a whole side (face in 3D) in common. A fence cell then

corresponds to 2 (or 3) indices in the Cartesian grid. We may choose the

reference grid as the fence grid, but this is not necessary. The fence is

stored as a set of scan lines (embedded in a set of scan planes in 3D).

cutting through the physical domain, as is shown in Fig. 5.7. Every line

is stored as a variable-length array of pairs of integer values representing

locations of fence cells within the fence grid. For each pair we also store an

indicator stating whether the area between the fence points:

ADAPTIVE SCENARIO 63

* is properly contained in the interior of the physical domain, or

* is part of the safety zone and beyond, or

e consists of fence points itself (in this case the two integers of the pair

are consecutive numbers; this way every fence point occurs exactly

once as an entry in a pair, which makes the boundary-violation detec-

tion easier)

The construction of the fence can be established by overlaying the physical

domain with the Cartesian fence grid with prescribed mesh size and using

the mouse to 'click' fence cells, or by drawing a continuous line which is

discretized by a program. In three dimensions this procedure can be carried

out for a number of parallel planes, each representing a slice of the physi-

cal domain. As the fence needs to be strongly connected within each such

plane, as well as in the direction perpendicular to the planes, information

about the previous (parallel) plane must be available when processing the

current plane. This may be done by plotting both planes on the terminal

screen simultaneously, using different shadings that do not obscure each

other. Corrective procedures may be applied by cutting slices out of the

domain in the two other perpendicular directions as well.

Artificial Intelligence techniques are finding their way into geometrical prob-

lem solving in computational fluid dynamics these days ([VOG8S]) and can

undoubtedly assist in creating fences, although completely automatic con-

struction is not envisioned in the near future. Checking connectivity of

3D-fences is a much easier task, and can be automated straightforwardly.

Step 10 Detect fence violations

Walk through the -ordered- list of grid refinements on a given level of

refinement to determine whether any of these grids cuts through or into

the fence. This procedure needs to be fully automatic, in contrast with thc

procedure for setting up the fence, which is partly interactive. We start by

walking along the boundary of a refined grid using steps that are smaller

than the mesh size of the fence grid. For this purpose we need to L, t ali

ADAPTIVE SCENARIO 64

estimate of the arc length along the edge of the refined grid as a function

of some parameter 9. For rectangular grids this is easy to obtain, but for

curved grids numerical quadrature is needed. Then we scale the coordinates

of the grid boundary points to correspond to the (integral) reference grid

and truncate the result to integer values. Subsequently, we match these

integer values with the fence-cell indices using the scan lines. Whenever a

match occurs, the boundary point is flagged (i.e., stored in an array).

After coming full circle around the grid, several possibilities exist:

a) one or more points have been flagged, which means that the grid vio-

lated the fence, or

b) no points have been flagged; this may mean that the grid is totally

inside the fence or tolally outside the fence, or that the grid completely

contains a closed part of the fence (which corresponds to an 'island'

or 'hole').

Case b can give rise to some ambiguity. Using the indicators on the fence

array, it can easily be decided whether all points on the grid boundary are

totally inside or totally outside the fence by just checking one point. The

inclusion of a hole in the refined grid may still occur in either case, though,

which might go undetected. Therefore, a list of 'danger points' (one for each

hole) must be supplied at the time of the creation of the fence. Whenever

a grid contains a danger point, it includes an entire hole, and appropriate

action must be taken (see Fig. 5.8). To determine whether a grid contains

a danger point a multi-stage technique may be applied.

1. Compute the distance between the center of the grid (which is defined

as the point corresponding to the center of a rectangle in computa-

ticnal space) and every danger point; if that distance is greater than

the radius of the grid (the maximum distance of any boundary point-

from the center of the grid), then the giid cannot include the danger

point.

ADAPTIVE SCENARIO 65

2. If the distance between the grid and the danger point is less than

the radius of the grid, then the coordinates of the danger point are

computed in terms of the refined grid (this requires inversion of a

coordinate transformation), which unambiguously decides whether the

danger point is contained or not.

Step 11 Handle fence violation

In case the fence has been violated, we need to refine the piece of the grid

that invades the safety zone using the underlying component-grid metric

structure, whereas the part of the grid which lies in the interior of the do-

main can be refined as is. In Step 10 we only identified the boundary points

of the refined grid where fence violation has been detected, but now a more

detailed analysis of the fence/grid intersection problem is needed. In fact,

a complete map of the 2D or 3D intersection is needed. It is now easiest

to walk through all the cells of the refined grid and mark matches between

corners of refinement cells and fence cells. Finally, a set of grid cells will

be found which effectively takes a 'bite' out of the grid (see Fig. 5.9). This

bite needs refinement within the underlying component-grid structure(s).

but perhaps more needs to be included in this refinement which cannot

easily be refined otherwise. The idea is that the largest part possible of the

refined grid remaining after taking out the bite should remain as it is. In

general this remainder is a stair-step grid, which needs no modification if

such grids are allowed (Fig. 5.10). If stair-step grids cannot be used. we

would like to find the covering which uses the smallest number of rectan-

gular grids (in computational space), but at the same time minimizes the

number of cells not covered which need to be refined afterwards using the

underlying component grid(s). Fig. 5.11 exemplifies this dilemma. Note

that the unmarked cells -those cells not in the bite initially- are lumped

with the bite in the end (indicated by the dot pattern). Care must be taken

that these cells and the original bite form contiguous space, so that no new

stray lumps are created.

ADAPTIVE SCENARIO 66

After as much area as possible around the bite has been covered, the rest of

the still uncovered points is lumped with the bite (note: all along we regard

all points in the refinement as bad points, whether or not they were marked

initially as error points. This means that their history is forgotten as soon

as they are included in a refinement). These points will be refined within

the underlying component grids. A slightly complicating factor is that one

bite may straddle several component grids and, conversely, that one area

in a component grid may carry bad points from several different bites.

This means that for every point in every bite we must find out on which

component grid it lies, and mark the appropriate cell in that component

grid. After all the bite points are marked this way (which involves somewhat

expensive coordinate-transformation inversions), we visit each component

grid separately and fit the marked cells with as few aligned refined grids as

possible without including too many unmarked cells. Reclustering may be

necessary for very crooked clusters.

Step 12 Compute solution on refinement

Using SWAPR (see Chapter 6), a new approximate solution is computed on

the set of refined grids. If a refinement lies on top of more than one coarse

component grid, it does not matter which coarse grid donates the boundary

conditions. The biggest problem in this step is obviously the large number

of coordinate-transformation inversions that needs to be carried out in order

to compute refinement/refinement and refinement/coarse-grid intersections.

Step 13 Create new set of adaptive refinements

After a new solution is computed, all the above steps from 2 to 12 are

repeated on the refined level, wit: the possible omission of Step 4, as a

reference grid already exists. Step 9 changes somewhat, as the erectionl

of a new fence should now be established in a fully automatic way. This

can be done as follows: discretize the boundaries of all the refinements on

the reference grid, making sure that the resulting set of discrete curves is

strongly connected. Next. use a contour-finding algorithm to strip a," i any

ADAPTIVE SCENARIO 67

interior discrete curves. Finally, trim the contour -if necessary- using the

original fence as a boundary in case the contour violates it.

Note: The construction of a new, restricted fence for the refinements is

only needed if we insist on proper nesting of all levels of refinement. If we

relax this requirement, which is no real concession for the steady, elliptic

problems we are interested in, we can just monitor violation of the original

coarse-level fence.

ADAPTIVE SCENARIO
68

Figure 5.1: Three rotangles used to cover shear layer

SCOMPOSITE GRID!

Error
Physical Space Zone Computational Space

Figure 5.2: Nine refinements in computational space needed for single error zone

ADAPTIVE SCENARIO
69

Figure 5.3: Sample composite gn'd

Figzrc, 5.4 Globoal refinement within component-grid structure

ADAPTIVE SCENARIO 70

Component grids with bad points Cells marked on reference grid

Figure 5.5: Cartesian reference frame to mark error points

l Physical boundar,

Safety zone

Fig .amn

Figure 5.6: Sample fence on a fenlce grid

ADAPTIVE
SCENARIO

Fence grid Scan line

IFI*

Fence grid Scan plane Scan line

Figure 5.7: Scan lines and planes

-- Danger point'

Grid patch

Figure 5.8: Inclusion of a danger point in a grid

ADAPTIVE SCENARIO 72

~~I I I f i I I i | li

Safety: "L Fence

,zone.

- ~Reftment=

Figure 5.9: A fence-violating bite from a refinement

Biite

H

Figure 5.10: Stair-step grid for interior-refinement region

ADAPTIVE SCENARIO 73

* Bit IEl ..If Intro reIemn g If I Reio lupe wit bite..

Figur 5.1 Posil co..erings o.itro eieetrgin(o pttoa pc'

Chapter 6

COMPUTING SOLUTIONS ON COMPOSITE GRIDS

6.1 Introduction

In this chapter we examine strategies for computing solutions on composite grids.

The most appropriate method -the Schwarz Alternating Procedure (SWAP)-

is selected for further study. A modified version of SWAP (called SWAPR) is

formulated, which does not require component grids to overlap. Solution of one-

dimensional model problems shows SWAP and SVAPR to be equally efficient and

accurate.

6.2 Direct Solution

Several ways exist to compute solutions on composite grids. The most obvious

way is to consider the discrete equations on the subdomains and all interpolation

formulas that link the grids as one big system of equations, linearize the equations.

and solve the system using a sparse-matrix solver. For two (overlapping) domain,

with unknowns named as indicated in Fig. 6.1 (u, corresponds to region Q1. U2

corresponds to region Q22, and u3 refers to the variables in the interface region Q23.

w' 1i sometimes degenerates to a line), the whole linearized algebraic system call

be written as:
(Au, 0 A13

0 -422 A23 U2
432 433 3 b

The first two (block-)rows represent the discretizations in the inteniors of grijl, Q.

and f?2. The blocks A.3 and A.-, represent the coupling with the unknowns in dti

'4

COMPOSITE-GRID SOLUTIONS 75

interface region %. The third row in the system indicates that the points in the

interface region talk directly to points in both other regions.

Solving (6.1) directly is the approach taken by Renshaw [HEN85]. Although

this is an attractive route, as it requires no special iteration schemes between grids,

there are some severe drawbacks:

" Although the matrix is sparse, it does not have a regular structure that one

can easily take advantage of. If it did, the problem could be better formulated

as a single-grid problem.

" An inordinate amount of storage is required as the spatial dimension goes up

and the grid resolution increases.

* Specialized solvers for rectangular domains (in computational space) cannot

be used.

* When the original system is nonlinear, equation (6.1) has to be solved many

times as part of an iterative procedure, which gobbles up much of the compu-

tational efficiency of the direct method.

For these reasons we will not explore this possibility any further.

6.3 Schur-Complement Method

Another option is first to apply block-Gaussian elimination to system (6.1). Ehmi-

nating all the unknowns in the interiors of regions Q, and 02 results in the following

equation for the unknowns in the interface region:

(A 3 3 - A 3 1 .-4 1 A4 3 - A 32 A2-A 23) u 3 = 3 .

The complicated matrix in the left-hand side is called the Schur-complement of

matrix block A 33 in the whole matrix.

After solving for the interface variables, the other unknowns can be computed

independently on their respective subdomains using dedicated solvers: only local

information is needed. For a sequential computer tis means that larger problems

COMPOSITE-GRID SOLUTIONS 76

can be solved, as only one block of memory the size of the biggest subdomain needs

to be available at any one time. For a parallel machine the independence of the

subdomain problems means less slowdown through communication between different

processors. The problem is evidently solving the interface equations first. The

Schur-complement is dense and cannot generally be generated or factored efficiently.

Moreover, formulating the interface equations requires information from the whole

composite domain, which we sought to avoid.

Iterative procedures as described by Chan [CHA88BJ get around the problem of

formulating the dense Schur-complement matrix, but again no dedicated single-grid

solver can be used to solve the interface equations, and information is still needed

from the whole domain. When one wants to compute solutions to the Navier-

Stokes equations in general curvilinear coordinates on a two-dimensional domain,

many auxiliary arrays have to be stored besides the three solution vectors, u, v, and

p. For example, in the currently implemented efficient solution procedure, at least

21 extra arrays (see Appendix C) are needed per grid in addition to the 15 metric

arrays. If these have to be kept for every subdomain instead of being generated

on the fly, severe memory problems will occur; we do not wish to store the whole

matrix (6.1)!

6.4 Schwarz Alternating Procedure

To deal with the above problems, we use the traditional. decoupled approach first

applied by Schwarz [SCH69' to prove existence of solutions to the Poisson equation

on complex domains. Many authors have analyzed the method formally with the

idea of utilizing it numerically. We refer the interested reader to [MIL65j, [51072'.

[ROD83L, [TAN7] . If we regard the dissection of the domain in Fig. 6.1 as a union

of two overlapping domains. fib and Q,.. where the variables in the overlap region

are counted twice, the method for two one-dimensional subdomains (see Fig. 6.2)

can be described as follows:

1. Guess boundary values on the edge of region Qj: this decouples Q, from QL.

2. Solve the problem in the interior of region Qj.

COMPOSITE-GRID SOLUTIONS 77

3. Use that interior solution to determine boundary values on the interface

boundary with region f,.

4. Solve in the interior of region Sl,.

5. Use that interior solution to determine boundary values on the interface

boundary with region 01.

6. Return to step 2.

It can be shown [MIL65] that this technique, called the SchWarz Alternating

Method (SWAP), converges under quite generous conditions. Formally, an equiv-

alence can also be established between SWAP and the Schur-Complement Method

[CHA88A]. But, of course, the advantage of SWAP is that no special solution

procedures are needed to solve interface equations, as boundary values are simply

injected (interpolated) from one grid onto the other. This is the only way grids com-

municate. After boundary conditions for individual grids are obtained, the interior

solutions can be generated independently, using dedicated fast solvers. Also, only

auxilary arrays pertaining to the grid on which a solution is being computed need

to be stored. In a purely sequential iteration procedure (one grid at a time), the

amount of storage needed goes down as the reciprocal of the number of subdomains

if the subdomains are of comparable (discrete) size.

We will examine the properties of SWAP for some model problems to get insight

in the way the method may be applied (and modified) to solve fluid-flow problems

on a composite grid.

6.4.1 One-Dimensional Convection/Diffusion; Continuous Case

The model problem is:

f" + cf' =9g (6.3)

with f(0) = p, f(1) = q. (6.4)

The constant c is the convection speed, f is the transported variable (positnic c cor-

responds to flow in the negative z-direction), and the prime denotes differentiation.

COMPOSITE-GRID SOLUTIONS 78

The general solution to equation (6.3) without boundary conditions is:

f(r) = h(x) + o e- '- + r, (6.5)

where h(z) is the particular solution to problem (6.3) with boundary conditions

(6.4),and o, and i are arbitrary constants. Now we cut the domain 0 = [0,1) into

two overlapping subdomains, P, = [0, 8) and f2, = [, 1] (see Fig. 6.2). Solutions f,

on f~i satisfying the left boundary condition axe:

fj(x) = h(x) + a(e " - 1), (6.6)

whereas solutions f, on Q,. satisfying the right boundary condition are:

f,() = h(r) + b(e-c(Z-) - 1) . (6.7)

The iterative Schwaiz Alternating Procedure is started by assigning initial guesses

to f, and f, at the interior boundary points of D, and Q?,:

fif(3) = h(3) + o (6.8)

=f(-,) h (-) + 6° . (6.9)

Here the superscripts indicate the iteration number. The procedure converges to

the true solution h if

lim o = lim 6" -0. (6.10)
n- ricO

With the assignments (6.8). (6.9). the following solution fl(x) is found:

f(x) - h(x) + o e-3 - 1 (6.11
e-C3 -1

which. evaluated at x = -. is:

if')=h(')) +o ° (.2
-0

A new value f () is computed using a relaxation factor 0,:

0)') ,f°0() + (I - 0,)fr°(-,) =

Id-i) + Oro 0 C + (I - 6)(O . (6.13)-c - 1

COMPOSITE-GRID SOLUTIONS 79

The new error V' in the value of f, at -7 is:

e- c' -1 -

8t - 1 + (1 -0,)80 (6.14)e- C'9 1

So far, we have guessed boundary values at 03 and -y, computed the solutior on Q,

using the boundary value at fi, and updated the boundary value at)' on Qt, using

the old boundary value and the new boundary value obtained from fh2 . Now we can

go the other way and compute the solution on !, and update the boundary value

at point 03 on 0i1. Skipping some of the algebra, we summarize:

f,'(0) = 01f,(3) + (1 - 0)ff(0) = h(O3) + ' . (6.15)

Here, 01 is the relaxation factor pertaining to the boundary value in $i on 01, and

a' is the new error in fi at point 3, which has the value:

S-_ 1 + (1 - 01)a0 (6.16)

One complete SWAP iteration has been performed. Using these results, the succes-

sive error vectors (o0
,

6 0)T and (a' , 61)' can be related through:

A B =B() , (6.17)

with
A -e)) B 61 (6.18)

-1-

The iterative procedure converges if the spectral radius of the iteration matrix Z,,

(Z.. = A-'B) is less than 1. It is easily found that:

P(Z=.,) = max[lIT ± v/T2 - , (6.19)

wit h

T = 2 - (01 + 0,) + , 6 -,1) = 1 - O)1 - O). (6.2(;)
(C-c - 1)(e-ch(-1) - 1)

From these calculations we conclude that the convergence factor depends strongly

on 3 and " , and, in fact, limn_. p(Z,.) = 1. This means that the SWAP iterati(,i

COMPOSITE-GRID SOLUTIONS 80

will never converge if there is no overlap, which is to be expected, because the initial

guess at the common interior boundary point would never change.

Optimal convergence is obtained if both eigenvalues of the iteration matrix are

zero, which means: T - 0 and A = 0. Satisfying the latter condition implies

that either 0, = 1, or 01 = 1, but not O1 = 0,. In other words, only one boundary-

condition update should be relaxed, whereas the other should be left alone. Because

the convergence factor depends symmetrically on both relaxation factors, we will

set one equal to 1, and call the other simply 0 to determine the optimal relaxation.

The expression for the spectral radius reduces to:

P(z..) 0 1- - 1 - (6.21)

p(Z5~) - 1 ~{ (e-0~ - 1)(e c(V 1-) (.1

which can indeed be made zero by choosing:

0"P, (O 0 1) - l)(e-c' - 1)1(.?)
,(e-0 - 1)(e('-1) (6.22)

The following results are derived from the above analysis of SWAP:

- The convergence factor does not depend on the sign of the convection speed

C.

- If no relaxation is applied at all (9 = 1), the method always converges if 3> ,.

- The optimal relaxation factor is always greater than 1 (overrelaxation).

An annoying fact about SWAP is that the convergence factor is a strong function

of the amount of overlap of the subdomains. We would like to do away with overlap

altogether for several reasons. First, points in the overlap region are visited twice

p,_; iteration, causing waste of computational effort.

Second, when grids overlap it is not easy to let points on the intersecting grids

coincide, especially in higher-dimensional cases. This necessitates interpolatioi.

which has the disadvantage of being nonconservative, i.e., it does not preserve

conservation properties integrally. More will bc said about this in Chapter S.

For the above reasons we investigate a modified Schwarz Alternating Procedure.

which will be called SWAPR (Schwarz Alternating Procedure-REVISED).

COMPOSITE-GRID SOLUTIONS 81

The same model problem (6.3), (6.4) is solved on the same two subdomains, Q,

and R.. Interior boundary values for S11 at point # are again taken from the solution

on 1. What sets SWAPR apart from SWAP is that the the boundary condition

at point -y for subdomain 2, is a Neumann condition, i.e., the derivative of the

solution is computed on f~l and used as a boundary condition for f?, (see Fig. 6.3).

This procedure is asymmetric, as a Dirichlet problem is solved on one grid, and a

Neumarn problem is solved on the other. It is this asymmetry that allows us to let

the overlap shrink to zero without deterioration of the method.

An analysis similar to the one employed for SWAP can be done for SWAPR, and

the following expression for the convergence factor of SWAPR, p(Z,,,), is found:

P(z,,,) = rnax[.IT VTI - 4I], (6.23)

with

e-c-) - IT=2-(9,+)+, ec _lj ' A--(1--)(1--O) . (6.24)

The most remarkable feature of SWVAPR is that the convergence factor does not

depend on -y at all, which means that the size of the overlap is immaterial, and may

be zero.

Again, p(Z,,,,) depends symmetrically on the relaxation factors 01 and 0r. and

one of them has to be equal to 1 for optimal convergence. Setting one equal to 1

again and calling the other 9, we get:

e-c'('- 0)_p(z.) = 1 - 8~) (6.25),
e- 0 -

which means that the optimal relaxation factor is:

1 - e- c

Besides the lack of the need for overlap, SWAPR has some more remarkable prop-

erties.

When no relaxation is applied (i.e., 9 = 1), we find:

e-c3 Z e-cP(z.,,.) - _ _ (6.27)

COMPOSITE-GRID SOLUTIONS 82

From this expression we conclude that SWAPR without relaxation converges if

>I In (2_). (6.28)

In Fig. 6.4, the graph of the critical values of # (those for which p(Z.w,) = 1) is

shown. Apparently, 0 needs to be extended nearly to the right boundary of the

whole domain in order to get convergence if c is negative. That means that almost

all of the domain must be covered by the left subdomain if convection is in the

positive z-direction. Recall that a Dirichlet problem is solved on fI, which has 0

as an interior boundary point, and that a Neumann problem is being solved on

11,, which has -f as an interior boundary point. Apparently, if # is an outflow

boundary point, solving a Dirichlet problem on its subdomain hurts. This fits in

with engineering experience, which suggests that Neumann boundary conditions be

prescribed on outflow boundaries. Conversely, if c has a significant positive (flow

from right to left) magnitude, / may be virtually anywhere in the domain, as the

critical point moves all the way to the left of the domain. This again conforms

with engineering experience, because now / is an inflow boundary point for which

a Dirichlet condition is suitable, whereas -y is an outflow boundary point, which

comes with the appropriate Neumann condition.

From eq. (6.26) we learn that 0 < 9,p < 1, which means that speed-up should

be obtained through underrelaxation, regardless of the direction of the convection.

Finally, we find:

O< 0"P</ if c<0 (6.29)

3< 6Pt < I if c > 0. (6.30)

This implies that heavicr underrelaxation should be applied if SWAPR is applied in

the 'wrong* direction (Neumann condition on inflow boundary, Dirichlet on outflow

boundary).

From the analysis of SWAPR we conclude that the seemingly arbitrary asyrn-

metry needed for convergence is quite natural for flow problems. A natural bias is

created by the direction of the flow.

COMPOSITE-GRID SOLUTIONS 83

6.4.2 Numerical Experiments

In this section we describe the results of numerical experiments with SWAP and

SWAPR for the model equation (6.3). The two-domain case, which was analyzed

in the previous section, is investigated most extensively.

All the convergence results derived for the continuous problem have been verified

to hold for the discrete case as well, which implies, among others, that the physical

overlap matters, not the number of points contained in it.

When the optimal relaxation factor is chosen, convergence takes place in 4 it-

erations for SWAP and SWAPR in all cases tested with the asymmetric relaxation

factors.

No difference in convergence rate was observed between first- and second-order-

accurate implementation of the Neumann boundary conditions for SWAPR for the

(smooth) source functions used.

When more than two subgrids are used, the situation becomes much more com-

plex, and has not been analyzed analytically. However, computations have been

done, and it was found for the nonconvective case (c = 0) that roughly the same

optimal relaxation factors hold for the multiple-subdomain case as for the two-

subdomain case. In Table 6.1 the results of computations with several equisized

nonoverlapping grids for the optimal relaxation factor (8.t = 0.5) are shown. The

computations were stopped if the relative changes in the boundary values dropped

below 10- .Two different global iterations were tested: the one-way sweep solves

sequentially from the first grid to the last, and then returns to the first grid, whereas

the full sweep solves sequentially from first to last, then from last to first. If the

number of subgrids is n, then per global iteration the one-way-sweep procedure

solves on n subgrids, and the full-sweep procedure solves on 2(n - 1) subgrids. The

work spent by the two different procedures is measured in units corresponding to

one complete solve on the global domain. Clearly, the work in the full-sweep case

increases much more slowly than in the one-way-sweep case. Experiments with red-

black orderings (first solve on all odd-numbered grids, then on even-numbered grids)

show that some improvement can be obtained over the one-way-sweep method, al-

though the savings are less than with the full-sweep strategy.

COMPOSITE-GRID SOLUTIONS 84

Table 6.1: SWAPR on multiple nonoverlapping grids

one-way sweep full sweep
no. subgrids no. iterations work no. iterations work

2 4 4 4 4
3 15 15 20 27
4 27 27 17 26

5 40 40 16 26
6 54 54 15 25

7 70 70 20 34

8 88 88 18 32

9 98 98 20 36

10 120 120 25 45

Computations of the above kind have also been done for the convective case,

but the results are not nearly as clear. The optimal relaxation factors computed

for the two-grid case are not close to those for the multiple-grid case, and, in fact,

the best results were obtained when relaxation factors were the same for all interior

boundaries in both directions.

COMPOSITE-GRID SOLUTIONS
85

C13

0 0

Figure 6.2: Two overlapping subdomains 01 and Q, with interior boundary points

/3and

COMPOSITE-GILID SOLUTIONS 86

x

0
1

Figure 6.3: SWAPR: Neumann conditions at point , Dirichlet at f

0.4--

0.2-

I I I I t I
-15. -10. -5. 5. 10. 15.

Figure 6.4: Critical values for boundary point versus convection speed c

Chapter 7

NAVIER-STOKES SOLUTION PROCEDURE

7.1 Introduction

In this chapter the procedure for computing solutions to fluid-flow problems on

single grids is described. The two main components of this procedure are the

discretization of the differential equations on a nonstandard staggered grid, and

the iterative solution of the resulting system of algebraic equations.

Additional issues are convergence criteria, implementation of Neumann bound-

ary conditions, and stabilization of high-order-accurate difference schemes.

7.2 Navier-Stokes Equations in Curvilinear, Nonorthogonal Coordinates

In this section the form of the Navier-Stokes equations governing steady, incom-

pressible, two-dimensional, viscous flow in a generalized, nonorthogonal coordinate

system is derived, and some preliminary discretization is done. Although it is pos-

sible to reduce the number of equations describing the flow by one through the

introduction of a streamfunction and the vorticity, we will not take that approach

but solve the primitive equations (momentum + continuity). This is to enable

straightforwaru extension to three space dimensions.

Using pseudo-tensor notation, the nondimensionalized momentum equations

plus the continuity equation in Cartesian coordinates in the so-called strong con-

servation-law form can be written:

8u=, (7.1)
-x=0,

and 0 10u _ Opa - i au ')=*- (j = 1,2). (7.2)
, (U Re Xi a8

87

NAVIER-STOKES SOLUTION PROCEDUlE 88

Re is the Reynolds number, ut is the Cartesian velocity vector, and p is the

pressure. Introducing a general, nonsingular coordinate mapping (t,7) '-* (z,y)

and applying the chain rule of differentiation, -- = Zm 8 , eqs. (7.1) and (7.2)

transform into: 8ev, aat, a (ui) = 0, (7.3)

and
-. , - 1tk- (7.4)

Oz. at (Re 8:,i Otk' 8:,Xj,

These equations are no longer in strong conservation-law form. This form can be

restored, however, by multiplying through by the Jacobian determinant J, defined

by

J=det (7.5)

and by using the fundamental metric identity

o -5- - 0. (7.6)

Thus, we obtain
¢-- (8 = , (7.7)

and

TC._ 8x (J
8

f P)

These are the basic equations to be solved. The unknowns are the Cartesian

components of velocity and the pressure.

Note: it is possible to formulate the Navier-Stokes equations using as unknowns

the contravariant components of velocity U (the components of velocity in the

direction of the curvilinear coordinates), defined by

U m = T- , (7.9)

but this leads to comparatively complex equations, the solution of which is also

susceptible to distortion due to sudden changes in metrics, according to Meakin

[MEA86].

NAVIEI-STOKES SOLUTION PROCEDURE 89

Hence, we only introduce the contravariant components of velocity into the

continuity and Navier-Stokes equations as a notational convenience. They make it

easier to linearize and to derive discretized equations, which are ultimately expressed

in terms of Cartesian components of velocity. If we also introduce the metric tensor

g, defined by
gmk = 8z' (7.10)

we can write:
- (Jr) =0, (7.11)

and

-j-u -- I pgk' (7.12)

The term in parentheses in eq. (7.11) is the mass flux in the m,,,-direction. The

expression in parentheses on the left hand side of eq. (7.12) is the uj-momentum

flux in the e,-direction. The latter consists of a convective and a diffusive part.

The diffusive part, in turn, is composed of an 'orthogonal' part (the e-derivative)

and a 'skewed' part (cross derivatives).

As Meakin (MEA86] explains, this distinction is made because we do not know

a priori the sign of the off-diagonal terms of the metric tensor g (the diagonal

terms are always positive). The wrong sign may destroy diagonal dominance of

the matrix representing the difference scheme that follows from integrating the

momentum equation. In order to preserve fiagonal dominance, which is a sufficient

condition for convergence for several important iterative solution procedures, all

terms pertaining to the skewed fluxes will be lumped into the source term of the

difference scheme to be derived; they are lagged one iteration.

To make the distinction between skewed and orthogonal fluxes explicit, we write

the flux TI,(uj) of u-momentum in the (,-direction as the sum of those two fluxes:

qJz,)= ,u)+ i(,,(7.13)

with 1 .8tiu
%Vuj) = JU'u, - i g- 2 (no summation over i) (7.14)

Re 8,

NAVIER-STOKES SOLUTION PROCEDURE 90

and

-'--U) -W- 3 9 '(1 - Uk) (no summation over i), (7.15)

where 6 is the usual Kronecker symbol. Using this notation, the momentum equa-

tions can be written as:

at, + p . (7.16)

'Raw' finite-difference forms of the continuity and momentum equations are

obtained by integrating eqs. (7.11) and (7.16) over a cell, or control volume, with

dimensions A by ATr in computational space (a cell is the rectangular region -in

computational space- staked out by four neighboring grid points whose indices

differ by at most one; see Fig. 7.1). The line integrals on the left, right, top and

bottom faces of the cell, indicated by w, e, n and 9, respectively (for west, east,

north and south), are computed using the midpoint rule. How quantities at the

midpoints of cell faces are determined is the subject of modern wizardry, some of

which will be discussed in the next section. The raw equations themselves are:

{(JU'X, _ (JU')'} all + f(JU2)" _ (3U2).} AC = 0 ,(7.17)

and

- (k(U j))}, 77i + {k(u j)), -(I(u,)).

0p u),- (4()}ti+{4() -('()} =

-) 8: C- P1j Aq - JJ tpI - (J±p)*} . (7.18)

7.3 Discretization on Modified Staggered Grid

The choice of grid for the Navier-Stokes equations depends on the type of pressure

boundary conditions prescribed. For boundary-layer flows the pressure is supplied

explicitly. For environmental flows the hydrostatic pressure might be given. In

either case the pressure is not an unknown, so no boundary conditions are needed.

Many problems in mechanical engineering require computing internal flows for

which the pressure is not known at the boundary. Therefore, we wish not to have

NAVIER-STOKES SOLUTION PROCEDURE 91

discretization points on the boundary where the pressure needs to be specified. The

standard trick is to apply a staggered variable arrangement, shown in Fig. 7.2. Here

the physical quantities describing the flow are specified not at grid points, but at the

centers of cells (pressure) and on the cell faces (velocity). The preeminent feature

of this arrangement (loosely called staggered grid) is that every u-velocity node

is straddled horizontally by two pressure nodes, and that every v-velocity node is

straddled vertically by two pressure nodes. This enables us to compute conveniently

z-derivatives of the pressure at those u-velocity nodes, and y-derivatives at the v-
velocity nodes, which is exactly what we need to discretize the momentum equations

in a Cartesian coordinate system; Moreover, no pressure nodes are needed on the

boundary.

An additional advantage of the standard staggered grid is the simple, compact

difference stencil for the continuity equation; for the cell indicated in Fig. 7.3, only
two u-velocity nodes and two v-velocity nodes are needed. The staggered grid also

provides momentum and kinetic energy conservation.

Finally, on the staggered grid every discrete momentum equation couples two
adjacent pressure nodes. This strong coupling inhibits the spurious oscillations in

the pressure that are allowed by the nonstaggered variable arrangement (see. e.g.,

[PAT81]).

All these reasons have led to wide acceptance of the staggered grid for inter-

nal incompressible-flow calculations. Unfortunately, most of the advantages of the

staggered grid are a coincidence associated with Cartesian coordinate systems.

A look at eq. (7.18) shows that derivatives of the pressure in both generalized-

coordinate directions occur in both momentum equations. This not only increases

the number of pressure nodes included in the difference stencils for the momentum

equation, but necessitates the introduction of pressure nodes on the boundary as

well, even for a simple, rotated Cartesian coordinate system! Similarly, for the con-

tinuity equation both components of velocity are needed on every cell face. This

again enlarges the difference stencil significantly. The difference stencils in compu-
tational space for the linearized u-momentum equation and the continuity equation

on a standard staggered grid are shown in Fig. 7.4.

NAVIER-STOKES SOLUTION PROCEDURE 92

One can use the above difference stencils, but then funny things happen to the

pressure gradient terms and the continuity equation. The indices i and j are used in

the t- and i7-directions respectively (half indices indicate points in between regular

grid points). The following discretization of the continuity equation is obtained if
we use the obvious central differencing for all derivatives and approximate midpoint

values by symmetric averages:

{(JU)e - (JU)} AT) + {(JU). - (JU).} AC

jij. [(n) + (L) (vij + V..~.U + Vij-1 + vi+1,,-i) /4]

i-j-1j2 2
(-1j) (v.... 1, + v,,, + V.... 1,-1 + v,,,.. 1) /4]1 }Az 7 +

{ . (u,, + ui,,+1 + ui-ij + ui-i,.+) /4 + (L) v,] j

J (ut,:_ + u,, + u,-i,:i + u_ 1,j) /4+

vij-1 A = 0 . (7.19)

Under the assumption that the spacing in computational space is unity in both

coordinate directions, the above expression can be written in case of a rotated

Cartesian grid (no indexing of metric terms needed, J = constant):

S- u,..j) + 2 - (v,+., + v,+ ,-,- - v,_,j - vs,,_.1) +

tg(ui,.i+l + u,-1j+1 - u,,:-i - u,-lij-i) + (vi'j - vo,-1) = 0O. (7.20)

If we now apply the seemingly innocuous transformation z = -17, y = (. which

corresponds to a rotation through an angle of 90 degrees, two terms drop out of

eq. (7.20), resulting in:

v,+,j + v+],J,_ - v,_,, - _ - u - , + u,,J1 + , = 0 . (7.21)

NAVIEIL-STOKES SOLUTION PROCEDURE 93

Consequently, all the velocity nodes on the cell faces drop out of the difference

equation, leaving only nodes further removed from the cell, as indicated in Fig. 7.5
by the arrows. The standard staggered variable arrangement, which is so convenient

for the aligned Cartesian grid, becomes inappropriate for the rotated Cartesian grid.

A similar situation arises with respect to the pressure nodes in the momentuza

equations. The stencils again become a lot larger, skipping nodes closer to the
discretization point. This problem cannot be overcome by using other differencing

schemes; for some angle of rotation the stencil will again deteriorate. Clearly,
this situation is undesirable and unnatural, as rotation should not introduce any

difficulties.

The root of the problem is that the staggered grid makes it easy to evaluate cer-
tain derivatives, but makes it hard to compute others. It works for a regular Carte-

sian grid, because only special derivatives occur. In general, however, all derivatives

of the pressure and the velocities are needed. We therefore propose a modified stag-

gered grid, shown in Fig. 7.6. This particular variable arrangement, also known as

the ICED-ALE arrangement, has been investigated by other researchers (PER85],

[SHI89). Shih et al. compared the modified staggered grid with eight other variable
arrangements, including the nonstaggered grid and the standard staggered grid.

The modified staggered grid came out best on a list of eleven quality criteria, even
when applied to a regular Cartesian coordinate system. The only two drawbacks

according to these authors are that the discrete continuity equations can become

inconsistent, and that the pressure may exhibit a checkerboard oscillation pattern.

The first objection is easily removed. Shih argues that an exact benchmark solu-

tion of polynomial shape is not preserved exactly by the modified staggered grid.

However, the polynomial is of degree four, for which the central differencing used

in the test cases is not exact, and no inconsistency exists. The second objection.

pressure oscillations, can also be taken away, as we will show. Furthermore. for

arbitrary coordinate systems the modified staggered grid has the nice properties

that the standard staggered grid has exclusively for regular Cartesian coordinates.

* easy evaluation of central differences of all flow variables,

NAVIER-STOKES SOLUTION PROCEDURE 94

" no necessity for pressure nodes on the boundary,

* compact difference stencils.

Every interior velocity node is straddled in both generalized-coordinate direc-

tions by two pairs of pressure nodes. Thus, derivatives in both directions can be

evaluated by averaging among pairs of pressure nodes and taking the proper central

differences between these pairs. For example, in Fig. 7.7 the pressures at the nodes

indicated by open circles (o) are averaged at the location marked by an asterisk

(*). Similarly, the pressures indicated by the solid circles (e) are averaged at their

asterisk location. The derivative at the central velocity node in the generalized ver-

tical direction is now computed by taking the difference between the two asterisk

pressures. In the same vein, pairs of pressures containing one open and one solid

circle each can be averaged at locations indicated by plus signs. Differences between

pressures at the plus locations then yield derivatives in the generalized horizontal

direction. Pressure nodes on the boundary are never needed.
The averaging process carried out above might tempt one to pose the question:

why not specify the pressure nodes at the asterisk and plus locations, as apparently

the pressures at these locations have more physical significance than the pressures

at the cell centers? Although the latter is true, severe difficulties are created by

placing pressure nodes at the cell faces. First, more pressure nodes are required than

in the cell-center alternative, whereas no new difference equations are introduced:

the system becomes undetermined. Second, the cell-face pressures are staggered

with respect to one another on adjacent (half.)grid lines, which makes for difficult

data structures. For these reasons we will stick to the cell-centered pressures as

primary pressure unknowns. The physical pressures in between can be computed

afterwards through averaging.

Let us now turn to the issue of checkerboard patterns occurring in the pressure.

It is important to realize that oscillations are a feature of the primary pressure, and

not of the physical pressure. To identify any spurious solution components in the
primary pressure, we will determine the null space of the discrete (pressure) gradient

operator on a uniform Cartesian grid with square mesh cells. In other words. we

NAVIER-STOKES SOLUTION PROCEDURE 95

will find those solutions for the primary pressures that make no contribution to the

pressure gradient. Hence, we require the discrete t- and q-derivatives to be zero.

To avoid using fractional indices in the analysis, we set vj = p. _. , so

v,.-,+ 1 + v,+, - v - - 0, (7.22)

V,+2j+1 - vi+i,, + Vi+i - , = 0. (7.23)

Difference equations of this kind have solutions of the form zi' = z'wj (no boundary

conditions need to be satisfied, since there are no pressure nodes on the boundary).

Substituting this expression for v into eqs. (7.22) and (7.23) yields:

zw + z - U' - 1 =0, (7.24)

zw - z + U- 1 = 0. (7.25)

Adding and subtracting these equations gives:

zw=1, z=w, so: z=-1. (7.26)

Thus, the null space of the discrete pressure gradient operator has dimension 2. and

its elements can be written in the following way:

V,,, = a + 3(-1)' . (7.27)

The first constant, a, represents the fact that the zero level of pressure is undeter-

mined. The second term represents the checkerboard pressure pattern, a spurious

mode. If we now define the true pressures, P, on the C-grid lines by:

i, = (v , , + P_,+1 /2 (7.28)

and those on Y/-grid lines by:

P,),_i (P , ,_ . +p,+i,_})/2, (7.29)

then, from eq. (7.27), all spurious modes in these pressures collapse to:

P = o , (7.30)

NAVIEI-STOKES SOLUTION PROCEDURE 96

i.e., a constant can be added to the entire pressure field. No nonphysical oscillations

can occur in these pressures.

Several ways are available to store the physical pressures in a more convenient
way than at the zig-zag locations on the cell faces. The easiest way is to introduce

yet another averaging procedure: define the pressure, ., at every grid point where

the velocities are specified as the average of the four surrounding values of P, so:

Pi~ , lj + ki + ,ij_1 / ' / + Pij+0 /4.(.1

Using eqs. (7.28) and (7.29), this definition simplifies to:

= (p , , + p+L,. + p + , + (7.32)

This means we can omit the computation of P.

A more elegant way of getting rid of oscillations is to subtract the checkerboard

component from the primary pressures. This has the advantage that no additional

storage is required. The idea is as follows: Assume the primary pressure can be

written as a true pressure, p', plus a checkerboard component, fle, where pc is
the null vector corresponding to a spurious mode, so p = pt + t6p. Then determine

the checkerboard component by taking the inner product, and subtract it from the

primary pressure to get the true pressure, i.e., p = p - P'(p.pf)/pc"' . This

corresponds to a projection of the primary pressure onto a space orthogonal to the

oscillatory component.

Although this filtering looks slightly involved, it is actually a very simple process.

On an n by m grid, we have: Ijphjj2 = V(nm). The inner product is determined by
adding and subtracting adjacent primary pressures alteratingly.

Another way of looking at the spurious oscillations is the following: what we

are computing ultimately is a pressure gradient field. Depending on the discrete

operator used to represent the gradient, spurious modes that occur in the pressure

may not affect its gradient. But what counts is that the gradients be accurate.

Should we want to invert the gradient operator, we will have to deal with its null

space, or make sure it does not enter into the final pressures. The latter can be

achieved through the filtering or averaging procedures.

NAVIER-STOKES SOLUTION PROCEDURE 97

It should be noted that these strategies are applicable for other staggered vari-

able arrangements. As Anderson [AND88] points out, the nonstaggered-grid dis-

crete gradient operator has a four-dimensional null space. In this case three inde-

pendent 'spurious' modes are present. These can be eliminated by averaging or by

applying the filtering method to each oscillatory component.

Finally, it should be pointed out that spurious modes are artifacts of variable

staggering, having nothing to do with grid curvature. Hence, the filtering method

will work in exactly the same way on a general, curvilinear, nonorthogonal grid as

it does on a uniform Cartesian grid with square mesh cells. To see this, set the

discrete pressure gradient on a general grid equal to zero, again making use of the

variable v to avoid fractional indices:

aij(v.,.+l -+ v,+Ij+1) + bj(vj, + v+l,j) + cj(v+1j + vi+1,j+1) + dj(v,,,+ 1 + vL,,,) = 0

(7.33)

e, j(vj,+j + v,,+l.,+1) + f,,(v,,, + v.,+I,) 4. 9,,j(v+,,j + vi+,,+,) + h,.(v,+l + v,,,) = 0
(7.34)

The coefficients a,,j through h,,. represent the changing metrics. The above equa-

tions are simply two discrete conditions on the four-point difference stencil involving

the midpoint averages of the pressure nodes surrounding each velocity node. For

these equations to make sense, every pair must be linearly independent. In general

no simple solutions to these equations exist, but we will try exponential solutions

of the form vwj = z'u, anyway. Upon substitution we find:

(1 + z)(u' a,,3 + b,j) + (w + 1)(z c,,, + d,.,) = 0, (7.35)

(1 + z)(w c,,j + f,..) + (w + 1)(z g,,, + h,,) = 0 . (7.36)

Obviously, despite the fact that the coefficients vary from point to point, the so-

lution w = z = -1 still holds. It is not clear that w = z = 1 is also a solution.

Rather, we will require explicitly that it be a solution, because we want a constant

pressure field to be preserved under a general discrete coordinate transformatioi.

This requirement poses restrictions on the way the metric terms are evaluated.

It follows that the discrete pressure gradient operator has the same null vectors

on a general curved grid as it does on a uniform Cartesian grid with square mesh

NAVIER-STOKES SOLUTION PROCEDURE 98

cells. There are no more null vectors if the discrete transformation is nondegenerate.

Hence, the checkerboard pattern in the pressure occurs on curved grids and can be

eliminated in the same way.

One subtle detail of the filtering procedure needs to be discussed. The removal
of oscillatory components was based on the observation that seemingly pathological

pressure fields could satisfy the condition: grad p = 0, due to the 'transparency'

of checkerboard patterns to the discrete gradient operator. The checkerboard had
to go. But, as we will see shortly, the filtering procedure described above does not

leave every constant pressure field intact, although disturbances grow smaller and

smaller with decreasing mesh size. How is this possible? It is tempting to say that

there is energy in the length scales of the order of mesh size, so that there truly is

a component of the solution matching the checkerboard pattern. This component

then would become less and less significant, as its spatial frequency goes up with

decreasing mesh size. This explanation, however, is flawed. Uniform fields have no

energy in any nontrivial frequency. Moreover, no problem occurs when the total

number of grid cells is even.

So what is going on here? The explanation is a plain linear algebra argument:

We want to be able to preserve uniform pressure fields and, at the same time, elim-

inate spurious oscillations. Hence, we should add a combination of null vectors to

the solution which does just that. This combination has to be orthogonal to the

uniform pressure field solution if we want to leave constant solutions intact. Inter-

estingly, the checkerboard vector (-1)'+) may not be orthogonal to the constant

vector, depending on the parity of the number of grid cells. If the parity is even.

as many grid cells get weighted with +1 as get weighted with -1, and orthogonal-

ity obtains. But if the parity is odd, one more grid cell will get weight +1, and

orthogonality is lost. Clearly, the way out is to orthogonalize the null vector to be

added to the solution with respect to the constant vector. This process is vaguely

reminiscent of Gram-Schmidt orthogonalization of the null space of the gradient

operator, because one of the null vectors is indeed the constant vector itself. The

analogy fails, however, if a null space of dimension higher than two is encountered.

In that case, orthogonalization does not take place recursively, but only with respect

NAVIEIt-STOKES SOLUTION PROCEDURE 99

to the constant vector. To establish the orthogonalization. write the oscillatory null

vector, p°, as the sum of the checkerboard vector, e, and a constant component,
p', so p0 = ape+ peh . Demand that (po.pe) = 0, so a = -(p.pf)/}lPef12. For an n by

m grid, we obtain:
= ((mf)mod (7.37)

P10 mn +I
Ultimately, a wiggle-free solution, pt, is obtained by subtracting the oscillatory

component from the 'raw' pressure:
Pn = p_ - pp. , m (7.38)

p - ,ihrnmn - (mn mod 2)/mn

Figs. 7.8-7.10 show the effects of filtering the pressure field of the lid-driven cavity

flow (see later in this chapter) for a 21x21 grid. The initial pressure vector has

components in both directions of the null space of the discrete gradient operator.

In Fig. 7.8 these raw pressures are shown. The checkerboard pattern is clearly
visible, and solution features are obscured. In Fig. 7.9 the pressure field is filtered

by subtracting the checkerboard pattern without preserving a uniform pressure field.

Although the quality of the solution is much better, some wiggles are still present.

Finally, Fig. 7.10 shows the solution filtered by eq. (7.38). No wiggles are present,

except those due to the coarseness of the grid and the resolution of the contour-

plotting routine.

Now that an appropriate variable staggering arrangement has been selected, we

return to the discretization of the continuity and momentum equations. Without

loss of generality we can use unit spacing in the computational domain, so A=

Ai1 = 1. Employing symmetric averages and central differences in eq. (7.17), the

following discrete approximation to the continuity equation is obtained:

{++[(u,+,+ + u,+i,) /2 + ()(v,+z,+I + v1+ ,,) /2 -
1+ [1+ C)

r(~ (3 ,i+ U1 ,,) /2 + (84Y + 2

2 '~ 2

(i1+Lul,,j+l + uj,,+1) /2 + (~ V,+Ii+i + t'~,+i /21
2 26E) .41 + y +.,+

2' (22)+

NAVIER-STOKES SOLUTION PiLOCEDUILE 100

a+ + + uij) /2 + (=0. vi+ 1 , + v, 4) /2] 0 (7.39)

Symbolically, this is most easily represented by using the location subscripts sw for

south-west (indices (ij)), nw for north-west (indices (ij + 1)), se for south-east

(indices (i + 1,j)), and ne for north-east (indices (i + 1,j + 1)), and the function

superscripts cu for u-coefficient of the continuity equation and cv for v-coefficient of

the continuity equation. The location indicators are relative to the center point of

the continuity-equation control volume with indices (i + 1,j + 1), which is the point

at which the pressure is specified. Using the capital letter A as a generic coefficient,

we write eq. (7.39) as:
Amwo + Am Un, + Amu., + Am une + Am, vow + Am V, + Amv. + Amvne = 0. (7.40)

The values of the coefficients are listed in Appendix C.

The discretization of the momentum equations is a little more involved, due to

the convection/diffusion operator. We will use the procedure outlined by Meakin

[MEA86] to represent the orthogonal and skewed momentum fluxes, which ensures

diagonal dominance of the discrete convection/diffusion operator. Meakin's ap-

proach rests upon the discretization technique described in Patankar [PAT80] for

the scalar convection/diffusion equation on a Cartesian grid. This discretization is

adopted because it leads to stable iterative procedures.

Because this technique is well-documented, we will simply summarize it here
1 au

for the orthogonal flux, %'(u) = JU'u - -e g g , and the skewed flux, 'lk(u)

1 jglk(1- 6 1k) -9'-, of u-momentum through the east face of the momentum

control volume in computational space. Indexing is now relative to the center of

the momentum control volume at the point P with indices (ij), which coincides

with a velocity node. Subscripts for the velocities are capitalized to indicate that

they are integers. Subscripts in lower case letters refer to fractional indices. So wc

have: W and w for west (indices (i - 1,j) and (i - 1,j), respectively), E and c

for east (indices (i + 1,j) and (i + L,j), respectively), N and n for north (indices

(ij + 1) and (ij + 1), respectively), and S and s for south (indices (ij - 1) and

(ij - 1), respectively). See Fig. 7.11 for a diagram of locations for the u-velocities.

NAVIER-STOKES SOLUTION PROCEDURE 101

With these definitions, the orthogonal flux is computed as follows:

(* (u)) = F up + {De A(IPeI) + maxI-F,O]) (up --) (7.41)
F = JU,=J J U , (7.42)

'+ .3 '+ ,3'

Pe = FeIDe , (7.43)

AD -2 [- + -(7.44)

rp = r, = _-J,,g ,, (7.45)
Re .

1 = ,r,+,,=-Ji+l 9", (7.46)rE =Fi Re = 1+1*i+j

F stands for mass flux, P is the cell Peclet number, D is the weighted conductance,

and r is the local effective diffusiity. The definition of the function A depends

on the kind of differencing used for the convective term. Upwind differencing cor-

responds to A(P) = 0, central differencing to A(P) = 1 - P/2, and the so-called

power law -which gradually changes from central to upwind differencing as the

cell Peclet number increases- corresponds to A(P) = max[O, (1 - 0.1 [P()S]. The

contravariant component of velocity U.+!,, is approximated by:

U(u,-,,, + u.,j) /2 + (+) (v,+,., + v,,,) /2 . (7.47)

Now we define the skewed flux through the east face:

= -_-- L, g {(,,,+1 - u,,_,)/2 + (u,+,,,+, - u,+,,,-,)/2} /2.
(7.48)

Similar definitions can be given for orthogonal and skewed u- and v-momentum

fluxes through the other faces of the momentum control volume.

Symbolically, the difference approximations to the momentum equations can be

written as follows, using the function superscripts u and v for velocity coefficients

and up and vp for the pressure coefficients in the u- and v-momentum equations.

respectively:

A' up = A' u 4 A". uW + A". u, + Au us + scu +

NAVIER-STOKES SOLUTION PROCEDURE 102

AuP p.,. + A"P p.. + AuP p. + AuP p.e (7.49)

A' vp A'vE+A' vw+A'vjv+A'vs+sc'+

A' pnw + Av P.w + AvP p. + Av P.e. (7.50)

The coefficients in these discrete equations are given in Appendix C. The quan-

tity ac is a source term, containing the skewed flux terms, body forces, boundary

conditions, and so-called defect corrections defined below.

7.4 Central-Difference Correction

We are interested in high-accuracy difference schemes, but these tend to become

unstable for high cell Peclet numbers. The idea then is to solve a system with

an inaccurate but stable difference operator on the left-hand side, and to add a

correction term to the right-hand side, which is the difference between the effect of

the left-hand-side operator and the operator of the desired accuracy. Let the low-

accuracy operator be L1 , and the high-accuracy operator L2. Discretizing using

only L1 leads to systems of the form:

Liuk+ 1 = f , (7.51)

where the superscript indicates that we are computing the solution iteratively. k + 1

being the new iteration level. If we try to solve this system using L 2 on the left

hand side, the iterative procedure will not converge. Instead, we solve:

Liu k+ 1 = Liuk - L 2uk + f . (7.52)

At convergence, uk+1 = uk, and the terms involving L, u cancel, resulting in a higher

accurate solution. Roughly speaking, we get the robustness and stability of the

low-accuracy operator, but the precision of the high-accuracy operator. It has been

observed, though, that convergence slows down if the difference between the two

operators is too big. Therefore, we use as the low-accuracy operator the power-law

scheme, which comes as close as possible to the central difference operator without

losing diagonal dominance of the convection/diffusion operator. The high-accuracy

NAVIEt-STOKES SOLUTION PROCEDURE 103

scheme is central differencing. For that reason, the term added to the source term

is called the central-difference correction (cdc).

Some words of caution regarding cdc axe in order:

o The addition of the cdc to the source term does influence the stability of the

iterative procedure, which can be seen most easily by writing the correction

scheme as a matrix splitting. In the limit we want to solve L2 u - f, but

inverting L 2 iteratively cannot be done in a stable fashion. Hence, write L2

as L, - (LI - L 2). Usually, we cannot invert Li directly either, so it is split

in turn into two parts: Li = M - N. Ultimately, we solve the iterative

sequence: Muk+l = (N + [Li - L 2])uk + f. The error-amplification matrix, E,

of this iteration is E = M-1(N + [L1 - L 2]). Convergence is governed by the

spectral radius of this matrix, which is not the matrix of the system without

cdc (E = M-N).

o It is important that the computation of Liu k in the cdc be consistent with

the computation of L juk+. This means that the same coefficients should be

used on both sides.

7.5 Application of Modified Staggered Grid: U-Shaped Channel

We now employ the modified staggered grid to compute the flow in a strongly

curved geometry in order to test its ability to handle large degrees of rotation. A

good candidate is the two-dimensional U-shaped channel (Fig. 7.12), which exhibits

a 180-degree turning angle. The grid used is shown in Fig. 7.13. Plain Poiseuille flow

obtains sufficiently far upstream and downstream of the bend, whereas asymptotic

results can also be obtained for the flow inside the curved section sufficiently far

away from the straight sections. Assuming rotation-symmetric, tangential flow in

the semi-circular bend (u, = 0, ue = ue(r)), the momentum equations simplify to:

0 2_ e ar (7.53)Or = Or'
0 1-lp +1 0 (1,9ruo) 7.4

r oo Re Or r O

NAVIER-STOKES SOLUTION PROCEDURE 104

The continuity equation is satisfied trivially.

From the above, it follows that the pressure can be written as:

p = O+ g(r), (7.55)

where g is a function of the radius r.

Using the coordinate system and the dimensions shown in Fig. 7.12, we obtain

for the tangential velocity:

21 (R 2 - 1l4R (R-d
krl .R,-d 7 +[(R 2 +d)r-(R 2 -cP 2)/rI ._I-nl R-

uo=Q (R - Rd R2I'R, (7.56)

4A__ (R-+d)4Rd ln-R

in which Q is the nondimensionalized mass flux. The multiplication factor a is:

2Q ((R 2 -_ad2)d In 2 (R-) - Rd) (7.57)

4Rd n2 .hR+d /J

The pressure difference across the channel is determined by integrating eq. (7.53)

numerically between two stations directly adjacent to opposite walls, r, = 2.01478

and r 2 = 2.98522, given R = 2.5, d = 0.5, and Q = 2d (mass flux for Poiseuille flow

with maximum velocity of 1). The result is: Ap = P2 - P1 = 0.216191. For the

same parameters we find that a = -20.1088/Re.

Results of numerical computations with the modified staggered grid for Reynolds

numbers 100, 300 and 600 are shown in Fig. 7.14. The solid lines and dashed lines

represent the pressures near the outer radius and the inner radius of the channel,

respectively. The pressure difference yields the centripetal force. The thin parallel

lines in each frame represent the asymptotic values of the two pressures for the

rotation-symmetric annular flow. In all cases the asymptotic values are reached

within 0.5% accuracy. No separation was observed, despite the occurrence of adverse

pressure gradients at the outer wall at the beginning of the bend, and at the inner

wall at the end of the bend. Some of the computed 0-velocity profiles are shown in

Fig. 7.15.

NAVIER-STOKES SOLUTION PROCEDURE 105

7.6 Evaluation of Metrics

The metric terms in the discretizations of the Navier-Stokes equations in Section

7.3 have not yet been defined. As long as the metrics are computed consistently,

the overall discretization of the Navier-Stokes equations will be consistent, and the

numerical solution will converge to the physical solution as the mesh size goes to

zero.

In many engineering applications, however, it is considered desirable that the

numerical solution for a finite mesh size share some special features with the physical

solution; among these are the conservation properties which guarantee that, even

on a coarse mesh, mass and momentum are conserved exactly (up to machine accu-

racy). The finite-volume-type approach taken in Section 7.3 ensures conservation,

regardless of how the metric terms are computed.

Another property deemed desirable is free-stream preservation. It means that

uniform flow is an ezact solution to the discrete problem. This is not a necessary
requirement, because every nontrivial solution suffers from truncation error. There

is no profound reason to demand that uniform flow not be distorted at all, as long

as the error goes to zero as the mesh size goes to zero. So is the requirement of
free-stream preservation only an esthetic one? No! There are two good reasons

for creating schemes that exactly reproduce uniform flow. The first is that the

computation of uniform flow is an excellent debugging device whose importance

should not be overlooked, especially on curvilineax, nonorthogonal grids. The second

is that in many cases it has been observed that free-stream-preserving schemes have

superior convergence and accuracy properties [FLO83]. For these reasons we will

construct our metrics such that uniform flow is an exact solution on any grid.

Uniform flow is defined by: u(,71) - u, v(,i7) = t', p(p) _ p . Substituting

these expressions into the u-momentum equation (7.18) yields:

-~ ~~7 ('()}.i+ {(T07(0). - (P()}~

NAVIER-STOKES SOLUTION PROCEDURE 106

Computing the metric terms 2 directly is difficult and inefficient. Instead, we
8z,

make use of the metric identity:

e =
1 afi*) (7.59)

and the definition of the Jacobian determinant J to write:

8 17 1 8 y L% I y r 1 e O 1 Oz (7T-; = -7 -' o-7 = 1 T77 -TY a ' TY - 5 .0

For uniform flow the pressure-gradient terms in the momentum equations should

vanish independently. If the Jacobian determinant is evaluated at the same locations

as -X, then the term in square brackets multiplying the pressure in eq. (7.58)

becomes:

Approximating all the derivatives by central differences gives:

___.+_,. - _ __ '- 'J-L - +

{ + 2 - (-- 2-2-2"-2 A77 _ 0. (7.62)

Consequently, the discrete pressure gradient vanishes identically if central differenc-

ing is applied to compute the metrics.

Now consider the momentum-flux terms; it is easily verified that the diffusive

fluxes drop out, irrespective of how the metrics are evaluated. This takes care of

the entire skewed flux terms. T', and of most of the orthogonal flux terms, o. The

remaining parts are:

TF(u) JeUv , o o (u) = J&U,,u , Vo(u) = 3j"uu , V'(u) = J.uu . (7.63)

Substituting these expressions into the u-momentum equation and using the defi-

nition of the contravariant components of velocity and the metric identity:

U ac U + 2 t + I I U I ax I.I
Tr ay j(7.G4)T1

NAVIER-STOKES SOLUTION PROCEDURE 107

u 2 &q/ L77 IBY 1,9Z
& U + ev oy V + V(7.65)

we obtain the combined flux terms:

{+ (,)u - 8: ,v
- N)U- ts + (7.66)

I- M nu+ (X-)V+(L s)t
If we now introduce the operator D through:

expesio (7.66 can b (A iA+[()+ (b]Ai7, (7.67)
(1 .1" n Tc

expression (7.663) can be written as:

D(y)u - D(x)v . (7.68)

According to eqs. (7.61) and (7.62), D(xi) =- 0 if central differences are used for

the metric terms. In that case the orthogonal fluxes also cancel, and the discrete

u-momentum equation exactly captures the free stream. A similar argument can

be applied to the v-momentum equation.

Because of the constancy of u, the left hand side of the discrete continuity

equation (7.39) is a multiple of the orthogonal u-flux terms. Hence, it also vanishes.

and the continuity equation is satisfied identically for uniform flow.

Thus, we find:

* Exact free stream capture is obtained by:

- evaluating L8 and the Jacrobian determinant J at the locations where

they are needed (no averaging to obtain mid-point values),

- using central differences for 49Z

e No restriction is placed on the fashion in which J is calculated.

9 No restriction is placed on the method for calculating the metric tensor com-

ponents, g"m, nor on where they are computed. as long as they are determined

consistently.

NAVIER-STOKES SOLUTION PIOCEDURE 108

7.7 Boundary-Condition Implementation

In fluid-flow problems non-Dirichiet boundary conditions often are applied on some

parts of the boundaries. Dirichlet conditions are no problem; whenever a certain

boundary value occurs in a difference stencil at an interior node, the known value

is used.

Neumann conditions (or mixed conditions) do pose some problems, since the

boundary values are part of the unknown solution. The honest way of incorporating

Neumann boundary conditions is to augment the system of discrete equations for

the interior nodes with the discretized boundary conditions. This, however, disrupts

the banded structure of the matrix problem, because difference stencils for Neumann

boundary conditions can be of arbitrary size (depending on the accuracy required)

and must be one-sided.

To circumvent this difficulty we suggest the following procedure. Do not incorpo-

rate Neumann boundary conditions directly. As solution methods will be iterative,

a reasonable guess for the boundary value is available from the result of the previ-

ous iteration. Hence, solve every problem as a Dirichlet problem and update the

boundary values after every iteration, i.e., the Neumann boundary conditions are

lagged.

To analyze this lagging procedure we study the convergence behavior of the

classical Gauss-Seidel method for the scalar, one-dimensional convection/diffusion

equation:

- u., + au, = f, with: u(O) = a ,u'(1) = /. (7.69)

Note that a Neumann condition is applied at the downstream boundary. Using

central differences for all interior points of the uniform grid with mesh size h. we

find:

(-1- g)u,_ + 2u, + (-1 +)ui+ = h2f, , i =l,n -1 , (7.70)

with uk = u(kh) ,fjk = f(kh).

The Dirichlet boundary condition at the left boundary is included by setting

uo = a. A first-order-accurate approximation to the Neumann condition at the

NAVIER-STOXES SOLUTION PROCEDURE 109

right boundary is: u,, - u,._ 1 = hfl. This expression can be substituted into the

difference equation at node n - 1 to eliminate u, from it, and we obtain:

(-1 - -)u._ 2 + (1 + --)un_1=hf,_1 -(-1 +)hfl. (7.71)

The system of linear equations now reads:

Az = b, (7.72)

with
2 -

-I - a 2 -1 +22

A= . . . , (7.73)
-I - 2 -1 + -

21- 22
-1 - " 1 +9

and h2f, + (1 + a€ , '

h2f 2 UL2

b= (7.74)

h2 fn_2 Un.2
hf_,(-1 + 0")hfl u._.

The straightforward Gauss-Seidel method can be written:

MIXk+' = N zk + b, (7.75)

with

(2 -1+ 2J 0

M, =, 2 (7.76)

2 -12'. '

This is the iterative procedure for direct implementation of the Neumann boundary

condition. The lagged version works as follows.

NAVIER-STOKES SOLUTION PROCEDURE 110

Rewrite the Neumann boundary condition as:

U =u_I+h#. (7.77)

If the condition at the right boundary were of the Dirichlet type, the discrete equa-
tion for node n - I in the split system would be:

(-1 - g2h)U*.-2 + 2uk2 + (1 - gj)uk+l = h2fn-l . (7.78)

The lagged Neumann boundary condition can now be implemented by substituting
eq. (7.77) into (7.78):

(_1 _ h-Uk k +1 -1~" 2., Slh
(-)u._2 + 2u,._A + (1 - .h). ~~. 1 -(772u.I (_2 -' =h~f,] (1 2) (7.79)

The Gauss-Seidel method with the lagged Neumann boundary conditions is:

M2Zk+1 = N 2 zk + b, (7.80)

with

". ",.022 -1+ + h

2

2 (7.81)

The convergence rates of the two methods can be measured by comparing the

spectral radii Pi and P2 of their respective iteration matrices, defined by:

pi = p(M-"NI) , and p2 = p(M;'N 2) (7.82)

Table 7.1 lists values of p, and P2 for different magnitudes of the cell Reynolds nuna-
ber Re, (Re, = ah) on a grid of size 50. Apparently, the lagged method converges
faster when the cell Reynolds number is below 2, the diffusion-dominated case, al-
though differences are small. When the cell Reynolds number is larger than 2, both
schemes are unstable, which is expected with central differences. Underrelaxation
can again produce stable schemes. Some results with a crude attempt at optimiza-
tion are presented in Table 7.2. The relaxation parameter is indicated by ,.

The following conclusions can be drawn from this investigation:

NAVIER-STOKES SOLUTION PROCEDURE 111

Table 7.1: Spectral radii for Gauw-Seidel iteration

Rec P, P2

0.02 0.9985 0.9960
0.20 0.9872 0.9861
1.00 0.7473 0.7471
2.00 0 0
4.00 2.988 2.989

Table 7.2: Spectral radii for underrelazed Gaus.Seldel iteration

Re, w P, P2
4.00 0.8 2.191 2.191
4.00 0.5 0.9942 0.9943
4.00 0.2 0.8679 0.8680
10.0 0.1 1.491 1.491
10.0 0.08 0.9925 0.9927
10.0 0.075 0.9450 0.9625
10.0 0.07 0.9491 0.9650
10.0 0.06 0.9400 0.9700
10.0 0.05 0.9622 0.9750

" both implementations are stable or unstable at the same time,

" the lagged implementation is faster in the diffusion-dominated range, whereas

the direct method is superior when convection is important,

" when optimal underrelaxation is applied, the convergence rate of the direct

method is markedly better than that of the lagged version.

Although there are ranges where one method is better, the differences are usually

small for nonoptimal relaxation. Numerical experiments with the Navier-Stokes

equations show that not much can be gained from implementing the more involved

direct method. In fact, in all our test computations the lagged version converged

faster. For this reason this implementation is used in the more complex calculations.

NAVIEt-STOKES SOLUTION PROCEDUIE 112

7.8 Convergence Criteria

When solving problems iteratively, it is important to have an estimate of how well

the solution approximates the true solution, i.e., how well-converged the solution

is. In general, we do not know the true solution, so the estimate needs to be based

on less exact information. Changes in the solution are not suficient to determine

convergence, as convergence factors close to I can yield very small changes between

iterates, even when a solution is far from converged.

As we cannot compare the iterate to the true solution, we have to monitor how

well it satisfies the (discrete) equation, i.e., the residual should be computed. For

the problem Au ' = b, discretized at n points, we can define the residual r" of the

approximate solution Vi as: r" = b - Af n , and the residual norm as Rn = IIr"II.
This definition is appropriate for a fixed-size problem -that is, for fixed n- but

fails when we want to make consistent approximations to a continuous problem.

Hence, we use the normalized p-norm of the discrete residual:

I n
= - I Eb, - (Au")i . (7.83)

Next, we want to eliminate the effect of the mesh size on the residual. In finite-

volume computations the discrete equations are obtained by integrating the partial

differential equation, Lu = f, over a mesh cell:

ee nl d = /.2cell f dce .. (7.84)

Typically. Au" approximates 0, Lu dQl, and b approximates f f dQc 11

Assuming a residual of magnitude r (i.e., Lfi - f = r), we find:

RP 1 Lu dSllc- ff f dc,ll - rd e.n . (7.85)
) =n cell cell I = 1 F€ 11c

If we furthermore assume uniformity of r and the cell area, we get:

= 1 P = rl c.ll.

n=an it, C

NAVIE-STOKES SOLUTION PROCEDURE 113

Clearly, the discrete residual depends on the mesh size. The dependence can be

eliminated by dividing by the cell area, so that the new definition, R;, of the

discrete-residual norm reads:

R; 1 '~Ib, .- (Aii) (7.87)
flet1l I

Note that the Navier-Stokes equations in curvilinear coordinates were obtained by

multiplying by the Jacobian of the coordinate transformation. As the (discrete)

Jacobian is inversely proportional to the cell area, we do not need to correct the

residual as in eq. (7.87); the definition of 7 , eq. (7.83), suffices.

A remaining difficulty in assessing residuals is the relative scaling of the mo-

mentum and continuity equations. The equations are nondimensionalized, so that

the velocities and the pressures are of order 1. Hence, we also have: 0(uv) =

0(u) = O(v) = O(u2) = 0(v) = 0(1). This means that momentum and mass

fluxes are of the same order of magnitude, so the terms in the momentum equation

have the same size as those in the continuity equation and no scaling is necessary.

This is true in flows in which the convective momentum flux dominates. If vis-

cosity is important, so are the diffusive momentum fluxes, and we should compare

these with the mass flux in the continuity equation. However, the diffusive fluxes

have the reciprocal of the Reynolds number in front of them. This means that in

a diffusion-dominated flow, the residual of the momentum equation will go down

as the Reynolds number goes up for equally bad iterative solutions. This has been

observed in the the lid-driven cavity flow (see later in this chapter), where diffusion

dominates. As the Reynolds number increased, the number of iterations to reach a

certain residual threshold decreased, which is counterintuitive. The reason for the

apparent speed-up is the lower initial and overall residual governed by the diffusive

terms; the actual convergence rates get worse with increasing Reynolds number.

Unfortunately, there is no universal remedy for this problem. Asking for a

reduction of the relative residual (with respect to the first iterate) is not totally fair

either, as this would imply very tight convergence of the continuity equation. If

residuals are to be the only source of error information, one still has to use physical

insight to interpret what a small residual means.

NAVIER-STOKES SOLUTION PROCEDURE 114

7.9 Solution Strategies

Now that we have discretized the equations and have defined convergence criteria,

we need to compute solutions. Among the most popular iterative methods for the

computation of incompressible, viscous flow are SIMPLE (Semi-IMplicit Pressure-

Linked Equations) and SIMPLER (SIMPLE-Revised), described by Patankar in

[PAT80], [PAT81]. These methods rely on conversion of the strongly coupled mo-

mentum and continuity equations into weakly coupled momentum and pressure

(correction) equations, which are used to advance the velocity and the pressure

more or less independently. Each subproblem requires the inversion of a diagonal

or a diagonally dominant matrix.

In this section we show that the decoupling can be interpreted as an approx-

imation to a simple matrix-splitting procedure. The latter has been formulated

separately by Maliska and Raithby [MAL83], and later independently by Perng

[PER89A]. Convergence of this simplified scheme for the Stokes equations is proved

using a theorem from optimization theory. When applied to the Navier-Stokes

equations, the simplified scheme is more robust than SIMPLER, especially as the

Reynolds number increases and the coordinate system becomes less regular.

7.9.1 Historic Formulation of SIMPLE and SIMPLER

We will first give the historical description of SIMPLE(R) so as to appreciate better

the matrix formulation that follows. SIMPLE(R) was formulated originally for a

standard staggered grid, and seems inseparable from it. But, as will be demon-

strated, SIMPLE(R) is a philosophy for solving the Navier-Stokes equations which

can be applied on any grid. We shall describe the method for our modified staggered

grid.

The indexing scheme Patankar uses [PAT81), based on the relative indices 'east'.

'west', 'north', and 'south', works only for Cartesian coordinates on a standard

staggered grid. In all other cases it becomes too complex. On the other hand, with

numerical indices the expressions become so involved that all insight is lost. For

that reason we introduce a means of writing difference equations in a generic way

NAVIER-STOKES SOLUTION PROCEDURE 115

which does not involve any indices at all. It is a merger of difference stencils and
algebra, which one might call stencil calculus.

The idea is that all the difference formulas used are symmetric about some
geometric center. Let this center correspond to the center (on paper) of the generic
stencil. For example, the equation

- 2u,, + u =j..) C(U1 +13 + ui.1, + u,.,+ + u,,-) (7.88)

could be represented as:

.u= So *u , oras: * * ou=0. (7.89)

Here a bullet (e) denotes a nonzero coefficient, whereas an open circle (o) means
that the coefficient is essentially zero. When a difference stencil has odd numbers of
nodes in all directions, the center node corresponds to the center variable on which
the stencil operates. When a difference stencil has an even number of nodes in some
direction, indices are relative with respect to a line in between two grid nodes, so
the symbolic equation is again unambiguous. A single bullet represents a scalar

multiple of the center variable.
Using this formalism, we write the discrete u- and v-momentum equations (7.49).

(7.50), derived earlier, as:

o = 0 o 0 O (7.90)

= 0 + p+sct, (7.91)

whereas the discrete continuity equation (7.40) becomes:

S• + O 0. (7.92)

The reason for splitting the five-point star representing the convection/diffusion

operator into a center node on the left-hand side and neighboring nodes on the

right-hand side will become clear soon.

NAViER-STOKES SOLUTION PROCEDURE 116

SIMPLE starts as follows. Using a guessed pressure field p', solve the momentum

equations (7.90), (7.91) for the velocities; call these u" and v'. Subsequently, define

corrections u', v' and p' by

U = U" + u', (7.93)

v = V" + V', (7.94)

p = p" + p'. (7.95)

Substitute eqs. (7.93), (7.94) and (7.95) into the momentum equations and neglect
* S

the terms * o 0 u' and * o 0 v' (i.e., the neighbors of u' and v'). The result of
* 0

these manipulations is:

U = U + - P , (7.96)

V= V*+ p. (7.97)

The velocities can be computed from eqs. (7.96) and (7.97) once the pressure cor-

rections p' are known. An equation for the pressure corrections can be derived by

demanding that the new velocity field satisfy the continuity equation. Hence, sub-

stitute eqs. (7.96), (7.97) into this discrete continuity equation (7.92). This requires

the definition of a product in our stencil calculus; to compute the product SlS2,

simply replace every node in S, by the complete stencil S2, centered at the S-node,

allowing overlap between stencils. For example:

and: = (7.98)

Now we can write the discrete continuity equation as:

which can be simplified to the final pressure-correction equation:

0(7see p' +ms'=O. (7.100)

NAViER-STOKES SOLUTION PROCEDURE 117

The term ms' is a mass source arising from the starred velocity field which does not

generally satisfy continuity, i.e.,

ma'= , ue + 0 v. (7.101)

Summarizing the SIMPLE procedure, we get:

1) Guess a pressure field p*,

2) Solve the momentum equations (7.90), (7.91) to get u" and v*,

3) Compute the mass source ms' from eq. (7.101) and solve the pressure-correc-

tion equation (7.100),

4) Coriect the pressure and velocity fields using eqs. (7.95), (7.96), (7.97),

5) Regarding the corrected pressure field p as a new guess p*, return to step 2

and repeat until convergence.

Before describing SIMPLER (an improved version of SIMPLE), some remarks are

in order:

In the SIMPLE procedure, three matrix problems are solved per iteration in

a two-dimensional calculation, and four in a three-dimensional calculation. This

includes one Poisson-type problem for the pressure correction, and two or three

inversions of the convection/diffusion operator. These inversions are performed

iteratively as well, so that a nesting of inner and outer iterations occurs.

The pressure-correction equation was arrived at by manipulating the momentum

equations and invoking the continuity equation; only linear algebraic manipulation-

were involved, so no spurious solutions were introduced.

An important drawback of SIMPLE is that an initial pressure field needs to be

supplied. Typically, it is much easier to guess a reasonable velocity field than a

reasonable pressure field.

SIMPLE does not always converge; especially if no underrelaxation is applied.

divergence will usually result. Patankar recommends underrelaxation factors be-

tween 0.5 and 0.8.

NAVIER-STOKES SOLUTION PROCEDURE 118

In order to improve convergence and to overcome the difficulty with the initial

pressure field, Patankar formulated a variation of the SIMPLE technique, which

came to be known as SIMPLER (SIMPLE.Revised). He noticed that the omission

of the term * o e u' in the velocity-correction equations (7.96) and (7.97) was ac-
e

ceptable with respect to the velocity corrections, but led to poor estimates for the

pressure correction p'. Hence, he proposed a new equation for the true pressure,

and used the old one (eq. (7.100)) only to obtain the corrected velocities. This new

equation is derived by defining the pseudo-velocities f and b:

77 o *u+c", and = * o oV-T' (7.102)
0 0

through rearranging the discrete momentum equations (7.90), (7.91) without the

pressure gradient. Employing the pseudo-velocities, the momentum equations can

be written:

U= + 1 (7.103)

V=, p+ :p. (7.104)

The pseudo-velocities can be computed straightforwardly from the last approxima-

tion to the velocity field. If the rewritten momentum equations are substituted into

the continuity equation (7.92), the new pressure equation follows:

e..

* * *p+ms=O, (7.105)

with the new mass source given by

ms = • f, + • . (7.106)

Combining this with the previously described steps for SIMPLE, we arrive at the

SIMPLER algorithm:

1) Guess a velocity field u. r.

NAVIER-STOKES SOLUTION PROCEDURE 119

2) Compute the pseudo-velocities fi and 6 using eq. (7.102),

3) Compute the mass source ma from eq. (7.106) and solve the pressure equation

(7.105),

4) Regarding this pressure field as p*, solve the momentum equations (7.90),

(7.91) to obtain u* and v*,

5) Compute the mass source ms' from eq. (7.101) and solve the pressure-correc-

tion equation (7.100),

6) Using the p' field, correct the starred velocities according to eqs. (7.96) and

(7.97), but do not apply the pressure corrections to the pressure field,

7) Regarding the latest velocity field as a new guess, return to step 2 and repeat

until convergence.

Note that now during every outer iteration four matrix problems must be solved

(five for three-dimensional problems), i.e., two Poisson-like equations for pressure

and pressure correction, and two or three momentum equations. Storage must be

allocated for u, fi, u*, v, i., v*, p, ad p' respectively.

SIMPLER generally converges faster than SIMPLE, and less underrelaxation is

required. Typically, underrelaxing the velocities by 75% and leaving the pressure

alone gives good results, according to Patankar. Moreover, the iterative procedure

no longer depends on an initial guess for the pressure field. Instead, an initial

velocity field must be supplied, which is more convenient.

We now make a slight digression to give another, more graphical demonstration

of the inappropriateness of the standard staggered variable arrangement for com-

putations on curved and/or rotated grids. Here we can conveniently exploit the

stencil calculus. Besides the already mentioned bullet (e) and open circle (o). we

will also introduce the symbol C, which is used when a certain coefficient in a dif-

ference equation is generally nonzero on a non-Cartesian grid. Using the standard

variable staggering, we find:

NAVIER-STOKES SOLUTION PROCEDURE 120

U-momentum equation:

* u + P +sCU, (7.107)

V-momentum equation:

Gv= 00V ® ®P + s (7.108)

Continuity equation:

S + E e 0(7.109)0 E)O

Consequently, the pressure-correction equation becomes:

Gee

E® ® ®p, +Ms' . (7.110)

For a Cartesian grid, these reduce to the canonical forms:

0

0 U = 0 0O U + 0 0p + acU (7.111)

0

*v so *'+ : p+3c, (7.112)

•+ = (7.113)

and

0 Gp'+mS'=0. (7.114)

However, if this Cartesian grid is rotated through an angle of 90P, then the expres-

sions become:

0 U= o 0u+ o op+ sc,, (7.115)

NAVIER-STOKES SOLUTION PROCEDURE 121

*V= 00 *V+ P 0 * (7.116)

00

and

0 0

0 0 0 o p'+m'= O. (7.118)
O0 0

• * •

Clearly, these stencils axe much more complicated than those for the modified stag-

gered grid.

7.9.2 Matrix Formulation of SIMPLE and SIMPLER

The SIMPLE and SIMPLER methods can be illuminated by formulating them in

terms of matrices. First, write the discretized, linearized Navier-Stokes equations

(2 momentum equations + the continuity equation) as:(' D+ Ru V U r
D t' + R' -v = r, , (7.119)

where D and R denote the diagonal and off-diagonal parts of the discretized convec-

tion/diffusion operator, respectively. The discrete gradient operator is (Nj, VT7)T,

and the discrete divergence operator is: (VV,). Notice the slight typographical

difference between the gradient (triangle VQ) and divergence (nabla V) operators. in-

dicating they are not exactly the same for curved (or staggered) grids. The symbols

u, v, and p represent the discrete velocity and pressure vectors. The right-hand-side

vector of eq. (7.119) contains source terms, and, most importantly, the boundary

conditions.

SIMPLE proceeds as follows: Assume an initial guess p" for the pressure field.

and from that, compute a starred velocity field by solving:

(D' + RU)u" = tp" + r, . (7.120)

NAVIER-STOKES SOLUTION PROCEDURE 122

(D' + R")v ° = Vp + r+ . (7.121)

This looks like part of the block-Gauss-Seidel splitting:

Du+ Du 0) U1 +1
V4 Vn) P)

+ 0 Vn v (7.122)
0

which is undefined because of the zero third column of the left-hand-side matrix.

After computation of the starred velocity field, a new iterate uk+i , vk+1 , pk+i

(level k + 1) is formed as the sum of the starred field plus a correction, indicated

by a prime:

v = v + V = + V (7.123)

PP P P P P

At convergence the corrections are zero, so they can be inserted anywhere in the

iterative process without affecting the final solution.

The corrected quantities must satisfy the original equation (7.119) at conver-

gence. Because this is too hard to solve directly, a disturbance that vanishes at

convergence is added to the right-hand side to make solution easier.
The particular choice of SIMPLE is:

D +R -V v'+ = r"

(V R P(+ P. rc

+ Rt' V1 (7.124)

0 P'

NAVIER-STOKES SOLUTION PXOCEDURE 123

Although this equation looks rather contrived, it is easy to show, using equations

(7.120) and (7.121), that it is equivalent to:

D 'A - V u 0

D' - 0) . (7.125)

Applying block-Gaussian elimination to this system (which is simple due to the ease
with which the diagonal matrices D can be inverted) yields:

Du Dt Vqvi U 0

D') 7 p v 0 (7.126)
P -v u" - Vn,." + ,o

with
= VDu)-'VC + Vn(Dv)-Vn (7.127)

The last row of eq. (7.126) represents the pressure-correction equation (7.100), the

right-hand-side term being the mass source ms' (7.101); /i, is a discrete Laplace-

like operator. Back-substitution of the pressure correction into the first two rows of

eq. (7.126) yields equation (7.96) for the corrected velocities, which completes the

SIMPLE iteration cycle.

At this stage it is useful to recast eq. (7.125) into yet another shape, using the

defining equation (7.123):

D '
) v r G: + -Ru V (7.128)

V V P r, 01p

This would be a Jacobi-type splitting, applied to the upper right block-(2 x2)

submatrix, if the starred quantities were an initial guess. However, they are not

independent quantities, as they are related through eqs. (7.120) and (7.121).

One may interpret SIMPLE as an attempt to solve a Schur-complement problem.

be it that the block-matrix inversions are done in the reverse order, i.e., first the

momentum equations are solved and then the pressure equation.

NAVIER-STOKES SOLUTION PROCEDURE 124

The above analysis of SIMPLE can help in understanding SIMPLER; if on the

right-hand side of eq. (7.128) the starred quantities are replaced by a guess -or

previous iterate- i.e., • k

V v (7.129)
P P

then the first two steps of SIMPLER consist of the evaluation of this right-hand

side (fi and £). Notice that this does not involve a starting guess for the pressure.

The third step comprises the application of block-Gaussian elimination to the
resulting system and the computation of the new pressure field from the last row of

the triangularized system:

Lpk+' = Vf(Du)-'{Ruuk - ru) + V,,(D)-'I{Rvk - rjI + rc (7.130)

Now it would be natural to complete the Schur-complement computation by

obtaining uk+ 1 and vk+l through back-substitution of pk+l into eq. (7.128), which
would merely require inversions of the diagonal matrices Du and Dv. However, SIM-

PLER regards pk+l as a better guess for the pressure field and returns to eqs. (7.120)

and (7.121) to invert the whole convection/diffusion difference operator in step four.

To improve on the results obtained from these inversions, that is, to obtain

a better approximation to the solution of eq. (7.128), another cycle of velocity

corrections is carried out in steps five and six, similar to the cycle decribed under

SIMPLE. The pressure field computed in the first step of the generalized Jacobi

splitting is not updated.

7.9.3 Simplified Solution Method

From the above analysis we conclude that both SIMPLE and SIMPLER are varia-

tions of the one-step splitting procedure:

D r = r, + - R" v (7.131)

NAVIEi-STOKES SOLUTION PROCEDURE 125

which Maliska and Raithy [MAL83] called PRIME (PRessure Implicit, Momentum

Explicit).

In algorithm form:

1) Compute the pseudo-velocities:

i = (D")-1 (r.~ - Ruuk:) and j, = (D')-' (r. - Rvv)

2) Compute the mass source ms = -Vf(Du)-fi - V,(Dv)-4 ,

3) Solve the pressure equation Lp *+ ' = ma + r, (note: not usually iterated to

convergence),

4) Compute the new velocities:

uk+ = -(Du)-'Vpk +' and vk+l = .. -(Dv)-7pk+•

PRIME can be used to analyze convergence properties. Moreover, it can serve

as a basis for acceleration methods like multigrid [PER89A], which are not so easily

implemented for SIMPLER. In the current implementation, one iteration of the

simplified scheme takes about 60% of the operations required by SIMPLER, and it

needs significantly less storage. On Cartesian grids and for low Reynolds numbers.

SIMPLER is substantially faster than PRIME. However, as the Reynolds number

increases, the simplified method gains ground. An additional advantage is that

usually no underrelaxation is required, whereas the stability and convergence rate of

SIMPLER depend vitally on the choice of relaxation parameters. For non-Cartesian

grids, SIMPLER quickly deteriorates, whereas the performance of PRIME remains

unaffected.

7.9.4 Convergence Analysis

In this section we examine the convergence properties of SIMPLE, SIMPLER, and

the simplified scheme for some model problems, starting with the one-dimensional

NAVIEIR-STOKES SOLUTION PROCEDURE 126

Navier-Stokes equations on a nonstaggered grid. Dropping redundant subscripts,

the discretized, linearized Navier-Stokes equations in one dimension can be written:

D+R -7) (u) = (r,,) (7.132)

Assuming that the number of velocity nodes is even, all the matrices in the follow-

ing analysis are nonsingular and square, so we can freely use their inverses. The

simplified method derived in the previous section can be written as:

(D-V) ()k+ :=)) :+) (7.133)

The error amplification matrix Z is easily computed:

Z 0 (7.134)

Obviously, p(Z) = 0, so that an exact solution is obtained after only two iterations

(provided the pressure equation is solved exactly). This should come as no surprise,

since the continuity equation in one space dimension can be solved independently.

However, SIMPLE is not able to duplicate this result. Analyzing its convergence

properties is slightly more complicated. The method can be broken into two steps

involving an intermediate variable (indicated by the asterisk '*'):

S t e p 1 : ()k (
(= (, (7.135)

Step 2:

(t is again eas to cm th+ ieao (7.36)
V p 0 P rc

It is again easy to compute the iteration matrix ZS:

Zs; 0= (7.137)
0 V7-'R(D + R)- 17)

NAVIER-STOKES SOLUTION PROCEDURE 127

The spectral radius is now not equal to zero. Instead, we find:

p(Zs) = p (R(D + R)-1)) . (7.138)

Even for the Stokes equation, we get p(Zs) > 1. Apparently, SIMPLE is too simple,

and underrelaxation is needed to stabilize the method.

The analysis of SIMPLER is even more complex. Now two intermediate variables

need to be introduced (indicated by 'Y' or

Step 1:

('~~~ VD0)(i~ =(D-Ro) - -ru) (7.139)

Step 2:

) (+) (7.140)

Step '9:
k+1= (0 u + (V1c (7.141)

lp 0I 1 P0

From this sequence the iteration matrix ZSR can be determined:

ZSR = 1 0 (7.142)

This matrix is the same as the one for the simplified method, and convergence is

again obtained in two iterations.

Some of the above inverses may not exist, for example because an odd number

of velocity nodes was chosen, or because some of the matrices are not square due

to the application of a staggered grid. The results of the analysis are still valid in

the sense that (generalized) eigenvalue equations can be formulated by multiplying

by appropriate matrices to eliminate all inverses.

The situation is not nearly as transparent in two dimensions. The same step,

can be followed, but the results are not very revealing. For example:

NAVIER-STOKES SOLUTION PROCEDURE 128

PCZ)=
((D"-'(- V LA, 1 V (Du)-)R" -(D")-l aZ'' (D')-sR "

'

P (D)VI-'V~ -,'(D"I-Ru (D)-1(J- V.-~,'(D'-1)RvJ ' (7.143)

and

p(Zs) = p(s-4' {V(D)-lRu(DtI + RU)-l +V,~(DV)- J(D" +RF)-1 v,,}) . (7.144)

These expressions cannot be simplified much in general. The convergence factor

for SIMPLER is considerably uglier than these two and will not be given here.

Moreover, the convergence factors for SIMPLER and the simplified method can

no longer easily be related. There is a convergence result, however, for the Stokes

equations in multiple dimensions on a nonstaggered grid, given in [DYN83]. Dyn

and Ferguson prove the following theorem:

Convergence of Iterative Schemes
The iterative sequence(ffT :)=()k (:)

) + r(7.145)E T 0 X2 0 0 2 r2

converges to the solution of the equation

if the (sub-)matriz splitting A = B - C is used and the following conditions hold:

1. A is a real, symmetric, nonnegative-definite matrix,

2. E is a real matriz with full column rank,

3. A and ET have no nontrivial null vectors in common.,

4. B is a real, nonsingular matrix.

5. A + C + CT is a positive-definite matrix.

NAVIEIR-STOKES SOLUTION PR.OCEDURE 129

This can be applied to the simplified method for the Stokes equations on a

nonstaggered grid as follows.

The matrix A is the discrete Laplacian, E is the discrete gradient operator

(whose transpose is the discrete divergence operator), and the splitting is defined by

peeling off the off-diagonal part of A, which means that B is a scalar multiple of the

identity matrix. From this it trivially follows that conditions 1, 3, and 4 are fulfilled

if the whole problem is multiplied by - 1. Condition 2 can be shown to hold by using

a symmetry argument, extending the one-dimensional result (the one-dimensional

discrete gradient operator on a nonstaggered grid with an even number of unknowns

is a square, nonsingular matrix and hence has full column rank). The only nontrivial

condition is 5. However, A + C + CT is irreducibly diagonally dominant, symmetric,

and has positive diagonal elements. This means that it is positive-definite, and the

iterative sequence defined by the simplified splitting method converges.

This is encouraging, but not sufficient; if we have convection in addition to diffu-

sion, and we use a staggered grid, only conditions 3, 4, and 5 are true. Calculations

will have to prove the applicability of the simplified method.

7.9.5 Computational Results

In order to compare the efficacy of the simplified method with SIMPLER's, two

test problems are considered:

e The square lid-driven cavity (see Fig. 7.16)

* The polar lid-driven cavity (see Fig. 7.17)

Both flow geometries consist of enclosures, three walls of which are stationary.

whereas the fourth moves at constant linear (angular) speed. The discretizations

are second order accurate. Stability is increased by using a central-difference correc-

tion. To avoid specifying the pressure on the boundary the modified staggered grid

(40 by 40 cells) is used. Inner iterations are performed using a line-SOR iteration

procedure. Increased accuracy is obtained by stretching the grids, so that points

are clustered closer to the walls, where boundary layers need to be resolved. Both

NAVIER-STOKES SOLUTION PROCEDURE 130

uniform-grid and stretched-grid calculations (see Fig. 7.18) were done. Some com-

puted velocity fields are shown in Fig. 7.19. The computations are carried out on a

Cydra 5 data-flow machine with a special-purpose numerical processor. A solution

is called converged if the 2-norm of the total residual vector of the nondimension-

alized equations falls below 10'. Results of computations for the lid-driven cavity

are summarized in Table 7.3.

Table 7.3: Iteration results for square cavity

Uniform Grid Stretched Grid
simplified SIMPLER simpifie SIMPLER

Re w iters cpu (a) iters cpu(a) iters cpu (a) iters cpu (a)
60 1.0 263 103.5 67 48.5 221 87.2 - -

0.9 83 59.8 - -

0.8 92 66.1 - -

0.7 102 73.4 - -

0.6 114 81.7 84 60.6
0.5 95 68.5

350 1.0 166 66.1 - - 169 66.9 - -

0.9 - - - -

0.8 60 43.6 - -

0.7 64 46.4 - -

0.6 72 52.0 69 50.0
0.5 83 59.8 79 57.2

500 1.0 159 63.1 - - 167 66.2 - -

0.9 - - - -

0.8 - - - -

0.7 56 40.7 - -

0.6 68 49.2 72 52.1
0.5 1 1 79 57.0 1 82 59.1

In this table, Re stands for Reynolds number, w stands for relaxation factor for

the components of velocity, 'iter' means number of iterations, and 'cpu' means cpu-

time spent (in seconds). Because the convergence of the simplified scheme always

slows down as it is underrelaxed, only cases without relaxation are listed. When a

bar '-' appears in a column, the method was unstable in that case.

NAVIER-STOKES SOLUTION PROCEDURE 131

The surprising phenomenon that the unumber of iterations goes down as the

Reynolds number is increased is due to the fact that in the resdual computations

the diffusive component is multiplied by the reciprocal of the Reynolds number (see

section on convergence criteria).

It should be noted, however, that convergence rates worsen as the Reynolds

number goes up. This is due mainly to the fact that the convection/diffusion oper-

ator D + R in the momentum equations becomes less and less diagonally dominant.

In general, convergence of both SIMPLER and the simplified scheme is oscillatory.

It was observed that performing more than one inner iteration per outer iteration

did not yield any gain. For the simplified scheme the number of outer iterations

stayed the same, which means that cpu-time was wasted by tighter inner-iterative

convergence. The number of outer iterations for SIMPLER decreased as more inner

iterations on the pressure/pressure correction were performed, but the total cpu-

time did not. Underrelaxation was applied only to the velocity; relaxing the pressure

deteriorates performance.

For the rectangular cavity (orthogonal grids) SIMPLER always converges faster
than the simplified method, if it is stable. Whereas the simplified scheme needs no

underrelaxation for all the cases tested, SIMPLER's stability depends crucially on
the underrelaxation parameter. As the Reynolds number goes up, more underre-

laxation is needed and the differences in convergence rates between SIMPLER and

the simplified method become smaller. Grid stretching also affects the stability of

SIMPLER, and heaier underrelaxation is needed to control it.

In order to determine the convergence properties of SIMPLER and the simplified

scheme for situations in which the discrete operators for the pressure gradient and

the velocity divergence are not transposes of each other, the polar cavity flow was

computed. Results for this case are summarized in Table 7.4. The situation is

now quite different. At low Reynolds numbers for the unstretched grid, SIMPLER
still beats the simplified method, but as the Reynolds number goes up or as the

grid is stretched, the performance of SIMPLER deteriorates rapidly and heavy

underrelaxation is needed, whereas the simplified method has no problem. Although
very careful tuning of the relaxation parameter can speed up SIMPLER significantly.

NAVIER-STOKES SOLUTION PROCEDURE 132

Table 7.4: Iteration results for polar cavity

Uniform Grid Stretched Grid
simplified SIMPLER simplified SIMPLER

Re w iters cpu () iters cpu (s) iters cpu (a) iters cpu (T
60 1.0 306 123.6 - - 258 102.0 -

0.9
0.8 97 70.8 - -

0.7 108 78.7 - -

0.2 214 152.7
0.1 423 301.2

350 1.0 192 78.2 - - 170 67.4 - -

0.6 95 69.0 -

0.5 109 79.4 -

0.2 69 50.0
0.1 79 57.2

500 1.0 189 76.6 - - 171 67.9 - -

0.5 109 79.3 - -

0.2 158 113.2
0.1 289 206.2

small errors lead to drastic decay of convergence rates, which makes this strategy

impractical.

A word on nomenclature; many popular methods contend to solve part of the

discrete equations implicitly, and part explicitly. This is potentially confusing, since

all the schemes examined (SIMPLE, SIMPLER, and PRIME) formulate the mo-

mentum and continuity equations implicitly, i.e., spatial derivatives in the unsteady

equations are evaluated at the new time level. When steady solutions are sought

using relaxation procedures. there is no new time level and the word 'explicit* loses

its meaning. All methods are equally implicit; they only differ in the way the matrix

NAVIER-STOKES SOLUTION PROCEDURE 133

system is split.

We now summarize the results of the last sections. The popular methods SIM-

PLE and SIMPLER for incompressible flow calculations have been cast in matrix

form, which makes them easier to understand and analyze. Both methods rely

on a splitting of the discrete convection/diffusion operator into a diagonal and

an off-diagonal part, and on substitution of the thus split system into the dis-

crete continuity equation, resulting in an equation for the pressure. A simplified

scheme (PRIME) that employs the same splitting and solves the whole system using

the Schur-complement approach has been examined. A convergence proof for this

scheme was given for the Stokes equations. Numerical experiments with the square

and polar lid-driven cavity flow show this scheme to be more stable than SIMPLER

for convection dominated problems on curved, nonuniform grids.

NAVIER-STOKES SOLUTION PROCEDURE 134

n

ATI 1 41 e
V$

Figure 7.1: Generic control volume ith relative cell-face indices

0 0 0 0 - 1

o Coon. 0r0
040 - 40 -

V-mom.

0 0 0 Volume

Figure 7.2; Standard staggered variable arrangement

NAVIER-STOKES SOLUTION PROCEDURE 135

IV

U U

IV

Figure 7.3: Standard staggered Cartesian grid; stencil for continuity equation

Continuity Stencil U-momentum Stencil
U

0 0

00 0

Figure 7.4: Standard staggered non-Cartesian grid; continuity and u-momentum
stencils

NAVIER-STOKES SOLUTION PROCEDURE 136

U

Figure 7.5: Standard staggered rotated Cartesian grid (900); continuity stencil

po 0 0 0 0

Contin.

0 0 0 0 A- 4--0

0 0

Control
o ,m. Volume

0 0 E

Figure 7.6: Modified staggered variable arrangement

NAVIER-STOKES SOLUTION PROCEDURE 137

+ 'Physical' Pressures

u*

'Primitive' Pressures

Figure 7.7: 'Primitive' and inter-node 'physical' pressures

0s

Figure 7.8: Unfiltered pressure; strong oscillations

NAVIER-STOKES SOLUTION PROCEDUR.E 138

0

<C 0 ° 0.
0 0 0

Figure 7.9: Filtered pressure without uniform-field preservation; weak oscillations

Figure 7.10: Filtered pressure with uniform-field preservation; no oscillations

NAVIER-STOKES SOLUTION PROCEDURE 139

N

W .. w1 P . l e

I I control
L..... _.J volume

S face

S

Figure 7.11: Diagram of variable locations for discrete u-momentum equation

'Neumann' outflow

Parabolic inflow

R

r

2d

Figure 7.12: U-shaped channel; physical domain

NAVIER-STOKES SOLUTION PROCEDURE 140

Figure 7.13: Grid for U-shaped channel (every 4th grid line shown)

NAVIERL-STOKES SOLUTION PROCEDURE 141

I I It'U

I..
II 2

a / -a ,

' "a

ItI

Figue 714:Innr- ~udoutr-wll resure inU-sape chnne

NAVIER-STOKES SOLUTION PROCEDURE 142

A

W j RelO100 Re 600

F 7 V

Figure 7.15: Velocity profiles in U-shaped channel

NAVIER-STOKES SOLUTION PROCEDURE 143

Moving lid

Pr x

Secondary vortices

Figure 7.16: Square lid-driven cavity

Rotating Secondary

Cylinder Primary vortices

Figure 7.17: Polar lid-driven cavity

NAvIEIL-STOKES SOLUTION PROCEDURE 144

Figure 7.18: Uniform and stretched grids for square and polar lid-driven cavity

NAVIERt-STOKES SOLUTION PROCEDURE 145

Re n60 Re w 350

...............-----

.....

Chapter 8

NAVIER-STOKES SOLUTIONS ON COMPOSITE

GRIDS

8.1 Introduction

In this chapter we discuss fundamental and practical issues concerning the solu-

tion of the incompressible, steady Navier-Stokes equations on composite grids. In

addition, numerical computations of several flows are presented.

8.2 Interpolation and Conservation

The SWAP communication procedure takes data from the interior of one domain

and uses it as boundary conditions for another. Because data are available only

on discrete meshes, interpolation is necessary as grid points on overlapping grids

often do not coincide. This interpolation causes problems, because it is not conser-

vative. When solving the incompressible Navier-Stokes equations for interior flows,

we usually do not prescribe the pressure on the boundaries of the grid(s). That

means that momentum fluxes through grid boundaries are not known and cannot

(and need not) be preserved. Mass fluxes, however, are known on the boundaries.

and a discrete version of the Gauss Divergence Theorem holds for them. Conse-

quently, the residual of the discrete continuity equation cannot be driven to zero on

a grid if the discrete mass flux through the boundaries is not exactly zero, i.e., if

the boundary values are not conservative; convergence can only be obtained within

the error of the interpolating scheme.

Several fixes for this problem have been suggested, the most obvious one be-

ing the application of a mass-flux correction factor ([FUC85], (CAR85], [MEA86]).

14G

NAVIER-STOKES ON COMPOSITE GRIDS 147

Outgoing mass fluxes are computed and multiplied by a correction factor so as ex-

actly to balance incoming mass fluxes. Although this correction often speeds up

convergence somewhat (Meakin reports an acceleration of approximately 10%),

it does not ameliorate the nonconservative properties of interpolation. At conver-

gence, the equation 'correction factor = 1' must be satisfied, which implies adding

another equation to the already dosed set of discretized continuity and momentum

equations. When grid points in regions of overlap exactly coincide, the correc-

tion equation is consistent with interior discretizations (i.e., a linear combination

of them) and full convergence is possible. When grid points do not coincide, the

correction equation is inconsistent with the interior discretizations and the prob-

lem becomes overspecified. Problems become especially acute on relatively coarse

meshes and with poor initial guesses, as correction factors may be large and can

even diverge, and interpolation is inaccurate.

Apparently, corrective approaches are imperfect. An a priori strategy, outlined

by Berger (BER84], makes explicit use of the conservation laws that are being

discretized. Where two grids intersect, the conservation laws are solved on cell

fragments to yield mass fluxes (normal velocities) from one grid into the other

(see Fig. 8.1). Although this technique in principle establishes fully conservative

communication between grids, it becomes unworkably complex when several grids

partially overlap, especially in three dimensions.

Pragmatic engineers will have to settle for interpolation, accepting its inherent

nonconservative properties while trying to reduce inconsistencies by increasing its

accuracy and decreasing the mesh size.

8.3 Asymmetrically Constricted Channel

The test case described in this section is based on work by Osswald [OSS83>. who

computed the separated flow in an infinitely long channel containing an asymmetric

constriction. The purpose of his investigation was -ompare the upstream and

downstream influence of a smooth geometric disturbai of finite length on fully de-

veloped channel flow. Osswald employed conformal mappings in combination with a

NAVIER-STOKES ON COMPOSITE GRIDS 148

Navier-Stokes solution procedure for curvilinear, orthogonal, boundary-fitted grids.

In order conveniently to construct a conformal mapping for a distorted channel, he

used the streamlines of the potential flow around a circular cylinder as one family

of coordinate lines, and the lines of constant potential as the other family. The

walls of the channel are two streamlines passing the cylinder on the same side. An

overview of the geometry is given in Fig. 8.2.

Although this geometry is readily amenable to conformal mapping, its drawback

is that the constriction is not truly of finite extent, and asymptotic results obtained

by Smith [SM176], [SM177] and Kumar and Yajnik [KUM80] are not matched well.

Instead, we investigate the geometry of a true straight channel of unit width with a

confined bump on the bottom wall. The straight section extends 5 channel widths

upstream of the bump and 20 downstream. The shape of the bump is given by:

= a (1- [C , (8.1)

where y is the distance from the bottom wall, a is the bump height, z is the

horizontal coordinate, c is the z-location of the top of the bump, w is the half-width

of the bump, and p is a parameter controlling smoothness (the bottom wall is CP- '
continuous). The parameters are chosen such that the constriction and the radius of

curvature at the bump are the same as for Osswald's Case IV and the bottom wall is

twice continuously differentiable, i.e., p = 3, a = 0.228, u' = 0.792. This geometry

(truncated) is shown to scale in Fig. 8.3. An overview of the single grid, including

a magnified section located at the bump, is shown in Fig. 8.4. Stretching is applied

in both coordinate directions to cluster points near the solid boundaries (especially
the bottom wall) and at the bump. The lanh-stretching is used, mapping s E [0. 1

to i E [0, 1] through
tanha(s - a,) + tanhasc

tanh a(1 - a,) + tanh as,

This stretching is centered around the point s,. The factor a determines the strength

of the stretching, with irbm0 corresponding to no stretching.

NAVIER-STOKES ON COMPOSITE GRIDS 149

8.3.1 Single-Grid Computations

Single-grid computations on a 240 by 60 cell mesh were done for the Reynolds

numbers 100, 200, 300, 400, and 1000. Close-ups of the separation bubble which

appears behind the bump for Reynolds numbers of 200 and up axre shown in Fig. 8.5.

Upstream boundary conditions consisted of a parabolic velocity profile, whereas

second-order-accurate Neumann outflow conditions (zero normal derivative) were

used at the downstream boundary. Five important parameters were computed for

these flows, viz., the upstream point z and the downstream point Z2 at which

the flow differs by less than 5% from fully developed channel flow, the detachment

point Zd, the reattachment point z,., and the reattachment length Ar = z, - Zd.

According to the nonlinear asymptotic analysis by Smith, the upstream influence of

the bump is proportional to Re1 /7 , whereas the downstream influence is proportional

to Re for large Reynolds number. Kumar and Yajnik agree with Smith on the

downstream length scale, but contend that the upstream length scale does not

continue to increase with increasing Reynolds number.

The results of our computations are summarized in Table 8.1. In order to com-

pare with asymptotic results, we also compute the scaled quantities il = xl(Re1/7

= z 2/Re, and Ai = Az/Re.

Table 8.1: Characteristic lengths for channel with bump

Re x, X2 Xd Zr Ax il i2 Ai

100 -0.832 1.476 -0.431 0.0148
200 -0.887 1.860 0.351 0.875 0.524 -0.416 0.0093 0.00262
300 -0.925 2.138 0.293 1.103 0.811 -0.410 0.0071 0.00270
400 -0.955 2.371 0.262 1.312 1.050 -0.406 0.0059 0.00262
1000 -1.075 3.606 1 0.188 2.422 2.234 -0.401 0.0036 0.00223

The results for the upstream influence of the bump agree well with Smith's

analysis, thus disproving Kumar and Yajnik. However, the downstream influence.

measured by z 2 , is clearly off. A much better match of our data can be obtained b,%

introducing the downstream length scale x2 = z 2/(Rc' 35), as is evidenced by the

NAVIER-STOKES ON COMPOSITE GRIDS 150

log-log plot of the characteristic lengths in Fig. 8.6. In this figure the best power-

law fits to all the data are indicated. It should be noted that Onwald's graphs (see

below) are straight lines (dashed), because he only supplies two data points. The

slopes of these lines, however, exhibit a marked discrepancy with the asymptotic

predictions.

The length of the reattachment zone, another measure of the downstream influ-

ence of the bump, does scale with the Reynolds number. The iterative procedure

had to be carried out to a very high degree of convergence in order to obtain steady

values (within 1%) of the characteristic lengths. The 12-norm of the residual in

all cases had to be driven to 10- 7 to obtain a converged solution. For a Reynolds

number of 200 this took 4055 iterations. The severe limit on the residual stems

in part from the fact that detachment and reattachement lengths are very sensi-

tive to changes in the computed solution, since they are determined by computing

zero-crossings of components of velocity near the wall. Moreover, in large parts of

the domain the flow is very regular and the residuals are small, thus making the

12-norm of the residual deceptively small.

Osswald did computations for Reynolds numbers 100 and 1000. His results

are summarized in Table 8.2. Again, the results for i2 do not agree well with

Table 8.2: Characteristic lengths for channel with bump; Osswald's results

Re x 2 I Xu Id AX . i _i Ai

100 -2.49 2.62 1.20 0.41 0.79 -1.29 0.0262 0.0079
1000 -4.57 16.59 3.78 0.19 3.59 -1.70 0.0166 0.0036

the asymptotic analysis. The other quantities do not scale well with the Reynolds

number either. This discrepancy might be attributed to the infinite length of the

bump in Osswald's channel.

8.3.2 Two-Grid Computations

The asymmetrically-constricted-channel geometry was selected because it can easily

be divided into subgrids on whose interfaces the flow is unidirectional. The disscc-

tion into two grids is shown schematically (truncated) in Fig. 8.7. A close-up of the

NAVIER-STOKES ON COMPOSITE GRIDS 151

overlap region is shown in Fig. 8.8. Note that grid points on the two grids do not

coincide in the region of overlap, although the horizontal grid lines are continuous.

The overlap region occupies 4% of the entire area of the domain and accounts for

2% of the points in the two grids. Calculations on this composite grid were done for

Re = 200. Using second-order bi-Lagrangian interpolation to compute boundary

values for the two components of velocity on the interfaces between the grids yielded

very good agreement with the single-grid case. Profiles of the horizontal velocities

near the centerline of the channel as well as near the bottom wall are shown in

Fig. 8.9. The dashed line signifies the single grid solution, whereas the solid line

pertains to the two-grid case. A dose-up of the profiles in the overlap region is

shown in Fig. 8.10. The detachment and reattachment points were computed to be

Zd = 0.351 and x, = 0.876, respectively. These are within 0.12% of the single-grid

values. The number of iterations on each component grid is 12% more than in the

single-grid case. On each component grid a maximum of 5 inner iterations of the

Navier-Stokes solution procedure is carried out before iterations on the other grid

start. If the interior solution procedure converges more tightly than the change

in the boundary values through the SWAP interpolation, the inner iteration stops

and the solution process is resumed on the other grid. The maximum number of 5

iterations per grid is somewhat arbitrary; iterating once or twice often led to insta-

bility, whereas more than 10 iterations deteriorated performance. Several different

relaxation factors for updating interface boundary values were tried, but little effect

on the convergence rate was noticeable. The computation reported here was carried

out using symmetric SWAP relaxation factors of 0.5.

In addition to the regular SWAP procedure, SWAPR was also applied to the

two-grid problem. Using exactly the same dissection of the domain as before, the

Dirichlet interface condition on the outflow boundary of the left grid was replaced

by a second-order-accurate Neumann condition. Again it was found that zd = 0.351

and x, = 0.876, respectively, but now twice as many iterations were needed on the

downstream grid. When the amount of overlap between the grids was reduced to

zero, convergence was so slow that no final converged solution was obtained, no

matter how the relaxation factors for boundary-information transfer were chosen.

NAVIER-STOXES ON COMPOSITE GRIDS 152

This result is disappointing; the one-dimensional analysis of SWAPR, presented in

Chapter 6, appears not to extend to two-dimensional situations, despite the fact

that the flow is locally virtually one-dimensional. We will show in the next section

that results can be obtained with SWAPR in the case of no overlap, although the

current method is by no means competitive with SWAP.

8.4 Lid-driven Cavity Flow

The lid-driven cavity flow, although easier to compute than the asymmetrically-

constricted channel flow on a single grid because Dirichlet conditions are given on all

boundaries, poses new problems for composite-grid computations. It was found in

Chapter 6 that for one-dimensional problems, Neumann conditions should be used

as interface conditions on outflow boundaries, and Dirichlet conditions on inflow

boundaries. However, in two-dimensional problems, inflow and outflow may occur

on the same boundary. For example, if the lid-driven cavity, shown in Fig. 8.11, is

cut in two, roughly half of the interface boundary experiences inflow, and the other

half outflow. If we are to apply SWAPR uniformly to the whole interface boundary,

then it is not clear whether the interface should be regarded as an inflow or an

outflow boundary, and SWAPR would perform suboptimally on at least part of it.

A solution to the dilemma is to apply SWAPR locally; at every point of the

boundary we determine whether inflow or outflow takes place and apply Dirichlet

or Neumann conditions accordingly. Let T denote the 'Dirichlet-ness' of a boundary

condition, i.e., i" = 1 means full Dirichlet, and r = 0 means full Neumann. Then

the distribution of r along the interface boundary at convergence would look like

Fig. 8.12. Unfortunately, when r is determined after every SWAPR iteration, the

square-wave profile of Fig. 8.12 is obtained only after very many iterations; the

interface conditions keep flipping from one type to the other, and the solution

converges very slowly. Apparently, the switch from full Dirichlet to full Neumann.

depending on the local velocity normal to the interface, is too crude. Instead of

this discrete switch, we propose a smoother transition from Dirichlet to Neumann

NAVIER-STOKES ON COMPOSITE GRIDS 153

conditions by prescribing mixed conditions of the type:

S + (I -, =f (8.3)

in which r varies continuously from 1 to 0 as the flow changes from inflow to outflow

(n is the coordinate normal to the boundary). The variation of r along the cavity

interface boundary then looks like Fig. 8.13.

A somewhat subtle difficulty arises at the point where r passes through 1. If we

denote the solution on the left side of the interface as ul, and on the right side as

u,, then the boundary condition imposed on the interface for the left domain is:

Ltut = Ltiur , (8.4)

where

Li = T + (1 - TI) (8.5)

and 71 is determined from the local inflow into the left grid. A similar condition

holds for the interface of the right domain. In case the two grids touch, the two

inflow parameters T, and -,T will be complementary at convergence, i.e., T = 1 - -T,.

At the point where 7-1 = 1, we have L, - L,, which means that the same condition is

applied left and right of the interface. If that is so, no convergence can be obtained

for the same reason that convergence of the (symmetric) SWAP is not possible

without overlap; asymmetry is necessary. The saving grace is that deterioration of

convergence of SWAPR only occurs at the time when the normal velocities on both

sides of the interface already match. Indeed, as we will see shortly, convergence

is possible using the smooth boundary-condition transition scheme, although it is

barely superior to the simple discrete switch.

All computations in this section are performed using a Reynolds number of

10, based on the cavity width and lid speed. The central-difference correction is

applied, and solutions are called converged if the combined norm of the residual of

the momentum and continuity equations drops below 10- s , and if at the same time

the change in the boundary conditions is less than 10'. The size of the grid is 20

by 20 mesh cells.

NAVIER-STOKES ON COMPOSITE GRIDS 154

A benchma k solution on a single grid was obtained in 220 iterations. This is

called one work unit (I u). The resulting velocity field is shown in Fig. 8.14.

A first set of composite-grid solutions was obtained by applying fixed interface

conditions on interior boundaries, i.e., Dirichlet on the right boundary of the left

grid, and Neumann on the left boundary of the right grid (Fig. 8.15). Conver-

gence rate and solution accuracy were influenced strongly by the order of accuracy

of the Neumann-boundary-condition implementation (Oh) and the order of the

Lagrangian interpolation (Omt). Although grid points on the interface boundary

coincide, the velocity derivatives need to be evaluated numerically. This is done by

differentiating the Lagrangian interpolation polynomials. Computations were done

for: (Obc = Omt = 1), (O = 2,=0jt = 1), (O& = 1, O,, -- 2), costing 0.80, 1.47,

and 1.80 wu's, respectively. However, all there results are unacceptably inaccurate;

the vortex is severely flattened (Fig. 8.16) and a plot of the vertical velocity on a

line through the center of the vortex shows a distinct kink in the composite-grid

solution (Fig. 8.17).

The reasons for this deterioration of accuracy are twofold. The first is that the

degradation of accuracy of the boundary conditions leads to an overall first-order

accuracy of the discrete solution. The second is that one-sided difference schemes

have to be used for implementation of the Neumann conditions on the 'receiving'

grid, as well as for the interpolation of the derivatives on the 'donor' grid; on

touching grids the difference stencils for receiving and donating do not coincide.

which makes the boundary conditions less accurate. When the grids are allowed

to overlap and SWAPR is applied, it is found in one-dimensional test computa-

tions that the order of accuracy of the solution remains one for linear interpolation

and first-order-accurate Neumann boundary conditions, but the error is reduced

substantially, simply because the boundary difference stencils coincide.

When both Ot, = 2 and 0 ,,,t = 2 for the cavity flow, accurate solutions are ol-

tained. Fig. 8.18 shows the composite-grid vertical-velocity profile across the vortex

to be in good agreement with the single grid solution. Higher-order interpolation

slows down convergence and does not improve the accuracy. so it is not investigated

further.

NAVIE-STOKES ON COMPOSITE GRIDS 155

Solution accuracy does have its price; even when optimal relaxation factors are

used to update the interface boundary values, we have to spend several work units
to obtain a good solution. For the optimal combination, 01 = 1.2, 0, = 0.5, conver-

gence takes 3.63 u's. For nonoptimal relaxation parameters or for different inter-

face conditions (e.g., full Dirichlet on the left grid and mixed Neumann/Dirichlet

on the right grid), the cost is slightly higher. As very careful tuning of relaxation

parameters is often impractical and yields limited savings, we will only use sym-

metrical relaxation factors from now on, that is, Og = ,. = 9. The optimal case for

comparison is 0 = 0.8, which takes 4.68 wu's.
When the local SWAPR procedure is adopted -,r depends on the local normal

velocity- results are not very encouraging. Letting r increase linearly from 0 to

1 as the local normal velocity ranges from maximum outflow to maximum inflow

leads to a cost of 7.80 wu's! This figure can be improved significantly by letting

the r = passage occur 'faster' (less smooth). When the --response to the normal-

velocity distribution becomes steeper (Fig. 8.19), finally approaching a square wave

corresponding to the abovementioned discrete switch, the number of iterations de-
creases sharply, goes through a mild minimum, and ultimately reaches a value of

4.31 wu's (the same as for the discrete switch), which is only slightly better than
the fixed-relaxation-factor base case. These results are summarized in Table 8.3,
where the cases in the first column refer to the curves of increasing steepness in

Fig. 8.19. Curves D and E, although still continuous, are so steep that they cannot
be distinguished from each other on the scale of the figure.

Table 8.3: Work units for local change of SWAPR relaxation factors

Case wit's
A 7.80
B 5.42
C 4.90
D 4.30
E 4.31

When overlap between the two component grids is allowed and regular SWAP is

applied -Dirichlet conditions on both interface boundaries- the situation changes

NAVIER-STOKES ON COMPOSITE GRIDS 156

drastically. Even if the extra work for solving on the larger subdouains is accounted

for, SWAP is significantly faster than SWAPR. The results for various amounts of

overlap are presented in Table 8.4.

Table 8.4: Work units for SWAP with varying overlap sizes

I __overlap
0 50% 40% 30% 20% 10%
0.4 1.72 1.75 - - -

0.5 1.70 1.66 1.77 2.54 8.57
0.6 1.74 1.61 1.64 2.23 7.23
0.7 1.83 1.63 1.57 1.99 6.19
0.8 1.85 1.64 1.51 1.81 5.32
0.9 1.85 1.63 1.46 1.67 4.60
1.0 1.80 1.64 1.42 1.55 2.97
1.1 1.73 1.63 1.38 1.46 2.53
1.2 1.66 1.58 1.35 1.15 2.27
1.3 1.63 1.65 1.33 1.13 2.41
1.4 1.65 1.84 1.34 1.26 1.92
1.5 1.36
1.6 1.56
1.7 3.36

A curious thing is that the work decreases as the overlap is reduced, almost

reaching the value of 1 wu for 20% overlap. This is because the number of iterations

for PRIME or other nonoptimal schemes on a single grid is a strong function of the

number of grid points: the decreased intergrid convergence rates due to smaller

overlap are offset by the improved intragrid convergence rates due to a smaler

number of grid points. Clearly, the convergence becomes more sensitive to 0 as the

overlap is reduced.

8.4.1 Mesh Refinement

To study the effect of mesh refinement, computations were also done for a 40-by-

40-cell grid. Now one work unit corresponds to 696 iterations on a single grid.

The best result for SWAPR on touching grids requires 5.6 wu's, whereas SWAP

NAVIER-STOKES ON COMPOSITE GRIDS 157

with 20% overlap needs only 0.98 vu's! The growing discrepancy between SWAP

and SWAPR as the number of cells increases explains why, for the very large grids

needed to cover the asymmetrically constricted channel, no satisfactory solution

was found within reasonble computing times using SWAPR without overlap.

8.4.2 SWAP versus SWAPR

So far, we have found that SWAP, which requires overlap between component grids,

can be nearly as efficient as a single-grid method, if tuned properly. SWAPR without

overlap and with low order of interpolation or low-order-of-accuracy implementation

of Neumann boundary conditions converges in about the same number of iterations,

but is inaccurate (one order lower than the interior difference scheme). Accuracy is

regained with increased order of interpolation and more accurate implementation

of boundary conditions, but this takes many more iterations. Accuracy with the

low-order-of-accuracy boundary treatment is also improved by allowing overlap,

in which case convergence is again as fast as with SWAP. However, the order of

accuracy of the solution remains one. Moreover, this again introduces the problem

of conservation, and nothing is gained by employing the more sophisticated SWAPR

scheme. Hence, for all practical purposes, SWAP remains the method of choice when

solving the incompressible Navier-Stokes equations.

A possible way out is offered by one-dimensional computations which show that

use of a direct (noniterative) solver on component grids leads to the same number

of SWAPR iterations for first- and second-order-accurate implementations of the

Neumann boundary conditions; apparently, the slowing of SWAPR convergence

for the cavity flow using second-order-accurate Neumann boundary conditions is

caused by the reduced performance of the interior iterative scheme, and not by

the SWAPR communication procedure per se. This conjecture is supported by

single-grid computations with Neumann outflow boundary conditions. Solhing a

Poiseuille-flow problem in a straight channel on a 20-by-20-cell grid takes 80% more

iterations if second- instead of first-order-accurate boundary conditions are used.

Analytical results can be obtained for the one-dimensional convection/diffusion

NAVIER-STOKES ON COMPOSITE GRIDS 158

equation studied in Section 7.4. We redo the convergence analysis for the lagged im-

plementation of Neumann boundary conditions on a grid of size 40 using the point-

Gauss-Seidel iteration method. In Table 8.5 the values are listed of the spectral radii

Piat and P2nd of the iteration matrices pertaining to first- and second-order-accurate

diffencing of the boundary conditions, respectively.

Table 8.5: Spectral radii for first- and jecond-order-accurate Neumann boundary
condition

Rec PI.t P2nd

0.02 0.9942 1.1271
0.20 0.9859 1.0991
1.00 0.7458 0.7669
2.00 0 0
4.00 2.9820 2.9852

Again, the first-order-accurate implementation has the best convergence rate on

a single grid.

Hence, if faster iterative solution procedures on component grids are used (such

as multigrid) whose convergence rates are less sensitive to the order of accuracy of

the boundary-condition differencing, the efficiency of SWAPR may well improve,

rendering it an attractive method because of its conservative properties.

An interesting and successful application of SWAPR is described by Funaro,

Quarteroni, and Zanolli [FUN88]. They use a spectral method within subdo-

mains to solve the scalar Helmholtz equation, Au + pu = f, and transfer interface

information through asymmetric Dirichlet/Neumann boundary conditions. It is

proved in [FUN88] that a proper choice of relaxation parameters -which depends

on the geometry- yields very fast convergence of the SWAPR iterative proce-

dure, although numerical experiments presented are limited to the one-dimensional

Helmholtz equation and the two-dimensional Poisson equation (i.e., p = 0). An

important difference from the SWAPR method presented here is that no iterations

are carried out on the subdomains; single-grid solutions are obtained directly. This

is impractical for nonlinear problems, especially in multiple space dimensions. If

NAVIER-STOKES ON COMPOSITE GRIDS 159

the method by Flunaro et a. is to be extended to the steady, incompressible Navier-

Stokes equations, another problem surfaces in that the continuity equation cannot

be solved directly if the subdomain Dirichlet boundary conditions are not conser-

vative. Iterative methods within subdomains must then be applied, and cannot be

carried to convergence before switching to another subdomain.

8.5 Periodicity and Single-valuedness

It can be shown [TEM77] that the boundary-value problem for the Stokes equations

in which only the velocity is specified on the boundaries of the domain is well-posed

under very generous conditions on differentiability and geometric complexity.

The steady Navier-Stokes equations with velocity boundary conditions (NS-

BVP) sometimes permit multiple solutions, a well-known example being the Taylor-

vortex flow between two rotating, concentric cylinders. Because of this nonunique-

ness, the NS-BVP is not well-posed in general.

However, we will focus on steady, laminar flows for which only one solution

is known. Hence, we assume that the NS-BVP is well-posed. This implies that

the solution is single-valued and differentiable everywhere in the interior of the

domain. Although this requirement appears trivial, it is not always easily satisfied

for reentrant problems. Reentrant problems arise whenever a domain is not simply

connected (contains holes), or when (sequences of) subproblems form closed loops

in space. The latter may occur even in a simply-connected region, for example when

a chain of refined grids is constructed adaptively (see Fig. 8.20).

To illustrate these issues, we consider the two-dimensional annular Couette flow

problem. The equations are almost the same as for the asymptotic solution in the

180-degree circular bend discussed in Chapter 7, i.e.,

_ O
(8.6)

49r r).

O= Re r &r "

NAVIER-STOKES ON COMPOSITE GRIDS 160

Boundary conditions are:

UOI(R-d) = U1 , USI(R+d) = • (8.8)

The unique solution is:

US= -L (R-d)(R+d) r +(R+d) r d)2) 2 (8.9)

r 2
Pf = " -dr' (8.10)

However, should we relax the requirements of continuity and differentiability

on the pressure, then we can add solutions of the type of the circular bend to the

velocity profile and write:

S= I4-- (R-d) (R _r) u,)+(R+d) (r (R d) 2 U +
TdIr rI

I-r"ln R_ 2 + [(R2 + d2)r - (R2 - d2)2 /r] -1- In R d)

Q W~ 2(R 2 -d 2)2in2 IR-d\ d (8.11

4Rd ln R+dI-R

-r) 2Q (R 2 _d 2)2n - Rd
" r Re 4R4 k.R+dR .(82

The variable Q signifies the added mass flux due to the azimuthal pressure gradient.

Clearly, this solution is unacceptable and we should have Q - 0. If a branch cut

were made at 9 = 0, we would find that p(r,0 +) # p(r, 0-). the difference being

proportional to Q. Hence, in the continuous case it is easy to single out the physical

solution by demanding continuity of the pressure.

The discrete problem is more difficult. As was shown in Chapter 7, staggered

grids eliminate the need to specify the pressure on the boundary of the domain

as they do not have pressure nodes on boundaries. This is fine if a grid side is a

physical boundary, but if it is a reentrant boundary (branch cut) it would be useful

to have pressure points on that side so that the pressure is uniquely defined there

(see Fig. 8.21). In the case of annular Couette flow, we may define one reentrant grid

that exactly covers the domain. If only the velocities are matched at the branch

NAVIER-STOKES ON COMPOSITE GRIDS 161

cut, a jump in the pressure may occur across the cut. This has been observed

numerically. The problem may go undetected since the size of the jump depends on

the iterative scheme used. Moreover, we may accept jumps in the pressure field from

one grid to another, as pressure is a relative quantity to which an arbitrary constant

can be added. This is an obscuring factor; an inconsistent reentrant pressure field

can only be unmasked by moving through the closed chain of grids and bringing the

pressure fields in agreement at every grid interface through addition of a constant

to the pressure on each grid. After coming full circle, no jump may occur between

the last grid and the first grid.

If the annular domain is covered with one partially self-overlapping grid, we can

interpolate boundary conditions for the velocity in the SWAP or SWAPR style from

the interior of the grid itself and compute the whole flow, including the pressure

field. A three-dimensional, unsteady version of this case is described in [MEA86].

Results were satisfactory and in good agreement with experimentally obtained data.

However, when a two-dimensional, steady computation was done in this study, the

solutions did not converge and showed ever-increasing azimuthal pressure gradients,

with jumps across branch cuts. In this case the problem can be eliminated by

prescribing the mass flux in the annulus, but generally this is not a known quantity.

The true source of the problem is that there is no communication between pres-

sure fields at grid interfaces. They should be matched explicitly. For the annular

grid (or any other single, self-connected grid) this can be achieved by formulating the

problem as a true periodic problem, i.e., by discretizing the differential equations

at all points inside the annulus, including those on the branch cut. The momentum

equation stencils for velocities on the branch cut will then include pressure nodes

straddling the interface, and single-valuedness and smoothness at convergence are

guaranteed. One might call this procedure the 'direct' solution of the periodic

problem.

The attractiveness of the direct method diminishes when more than one grid is

used to cover the annulus, because then solutions need to be computed on all grids

simultaneously to maintain periodicity: we prefer to use SWAP. That means that

NAVIER-STOKES ON COMPOSITE GRIDS 162

velocities on boundaries are interpolated from adjacent overlapping grids. Conse-

quently, the momentum equations are not enforced on grid boundaries and a natural

way of connecting pressure nodes on different grids is lost. Therefore the following

strategy is used.

Formulate discrete momentum equations on the target grid as before, but re-

place the pressures at the "odes adjacent to the interpolation boundary by the

average of the pressures on the target grid and the donor grid (donor values must

be interpolated). At convergence the two will be equal and the pressures match.

Test computations of nonreentrant problems show that the pressure-communi-

cation scheme slows convergence considerably with respect to 'unconstrained' it-

eration. Even on a single grid it has been observed that prescribing the correct

pressure at nodes adjacent to the boundary causes considerable slowdown. Hence,
the pressure is only matched on reentrant grids, or reentrant sequences of grids.

An alternative approach to solving the pressure-communication problem is of-
fered by Perng [PER89B]. [PER89C]. He formulates pressure equations for every

component grid and solves these globally using a Schwarz-like communication pro-

cedure. This ensures continuity of the pressure field across grid interfaces at con-

vergence. The time-accuracy of his explicit, unsteady method guarantees that full

convergence of the pressure is possible at every time step.

8.6 Cylinder in Crossflow

An interesting problem involving reentrant grids and more challenging composite-

grid generation is that of the steady, laminar flow past a circular cylinder. It is a

classical problem that has been studied by many researchers.

8.6.1 Flow Description

One of the earliest quantitative experimental and computational investigations was

carried out by Thom [TH033], but the results are rather crude, and no values for

the length of the separation bubble behind the cylinder -the prime parameter of

interest- are published. Later experiments conducted by Taneda [TAN56] show

NAVIER-STOKES ON COMPOSITE GRIDS 163

that when the Reynolds number, based on cylinder diameter and free-stream veloc-

ity (Re = U,D/v), is less than 5, the flow remains attached (Fig. 8.22a). At the

critical Reynolds number of about 5, the boundary layer separates and two symmet-

ric, steady vortices form behind the cylinder (Fig. 8.22b). These become elongated

as the Reynolds number increases, but the flow remains steady up to Re = 35,

at which time disturbances occur far downsteam of the cylinder (Fig. 8.22c). The

vortices themselves remain stable and symmetric until Re = 45. Then the distur-

bances propagate upstream and start to affect the wake structure, leading to the

K rmin vortex street (Fig. 8.22d). This regular, unsteady phenomenon persists

from Re z. 60 to Re ;. 5000, after which fu..- turbulent mixing sets in.

Most researchers focus on the intriguing properties of the inherently unsteady

flow at larger Reynolds numbers, but some experimental and computational results

are available for the steady, laminar range. These are given in Table 8.6. The

headings of the columns denote the references. The dimensionless quantity LID

signifies the ratio of bubble length to cylinder diameter, as indicated in Fig. 8.22b.

Additional experiments by Acrivos et al. [GRO64], [ACR68] yield the curve fit

LID = 0.07Re - 0.5. Clearly, a lot of scatter exists in the data. Results published

in [TAN56], [KAW66], and [KAR87 were only presented graphically. The graph

in [TAN56I is particularly poor (see footnote for data point Re = 42). Collins

and Dennis [COL73] report that the bubble length was still increasing slightly at

the time the computations were terminated, On the other hand, they remark that

further grid refinement tends to decrease the bubble length.

8.6.2 Numerical Solution

The physical domain used here is the one employed by Karniadakis [KAR87], shown

in Fig. 8.23. Boundary conditions are also taken from [KAR87I. On the left bound-

ary we specify uniform inflow (Dirichlet). At the top and bottom boundaries of the

domain, far away from the vorticity-generating cylinder, we prescribe velocities per-

taining to the invis, potential flow around a circular cylinder (Dirichlet). A fully-

developed-flow condition is imposed on the right boundary (Neumann: - 0). At

the cylinder wall a no-slip condition is used (Dirichlet).

NAVIER-STOKES ON COMPOSITE GRIDS 164

Table 8.6: Previous results for aeparation-bubble lengh LID

Re TAN56' KAW662 DEN703 COL73 KAR877
7 0.10
9 0.2
10 0.34 0.26 0.26 0.24
11 0.3
13 0.4
17 0.7
20 1.5 0.94 1.11
21 1.1
27 1.4
30 2.0 1.90
35 1.8
39 2.2
40 3.0 2.35 2.15 3.29
42 2.2" 1 1 __ __1

1 Experiment
2 Unsteady computation, relaxing to steady state

3 Steady computation

4 This data point was cited in (HON69] as a result of the experiment performed in [TAN56)

We apply SWAP on overlapped grids for this geometry. An overview of the

composite grid, consisting of five components, is presented in Fig. 8.24. Only every

fourth grid line is shown for clarity. Notice the strong stretching applied on the

annular grid (No. 2) in order to resolve the separation bubble. Stretching is also

applied on grids 1 and 3 to concentrate more points near the cylinder, and near thc,

wake. Pressure matching is only applied on the reentrant boundaries of the annular

grid.

Calculations were done for Reynolds numbers 10, 20, 30, and 40. Several se-

quences for stepping through the chain of grids were tried, but only minor differences

in efficiency were observed. The final sequence used in this study is: 11,2,3,4,5,2).

Sufficient convergence criteria are: residual drops below 10- 6, solution changes on

interface boundaries are less than 5 * 10 - . Biquadratic Lagrangian interpolation

was used for communication between grids, and the Neumann condition was second-

order accurate. For Reynolds numbers 10, 20, and 30, the SWAP relaxation factor

NAVIER-STOKES ON COMPOSITE GRIDS 165

was 1, and the velocity relaxation factors were 0.8. Reynolds number 40 required

stronger underrelaxation: 0.8 for SWAP and 0.6 for velocity. The results of the

computations are given in Table 8.7.

Table 8.7: Composite-grid reulti for separation.bubble length LID

Re LID
10 0.24

20 0.87
30 1.46

140 ji2.01

Graphical representation of these data, together with results published by other

researchers, is given in Fig. 8.25. Good agreement with the experimental values is

obtained. Accuracy of the present solutions was verified by changing the mesh size,

the order of interpolation, and the severity of the stretching of the annular grid for

the case Re = 20. Deviations of less than 1% were observed with respect to the

value listed in Table 8.7.

Extra-fine-grid calculations were performed for Reynolds numbers 30 and 40,

in which the number of cells on all grids was multiplied by 1.5 in both coordinate

directions. The separation-bubble length increased from 1.43 to 1.46 for Re = 30,

and from 1.95 to 2.01 for Re = 40. Applying Richardson extrapolation, we estimate

that the errors in the finest-grid computations are 1.2% and 2.5%, respectively. In

other calculations we consistently observed an increase in bubble length as the mesh

size was decreased. Hence, the grid-independent bubble length is estimated to be

1.48 for Re = 30, and 2.06 for Re = 40.

A solution at Re = 40 was also computed for a 'composite' grid consisting

of only the annular grid, with uniform-flow conditions (Dirichlet) prescribed on its

perimeter. This yielded a nondimensional bubble length of 1.59, which demonstrates

that the composite-grid communication procedure works well; the annular grid by

itself is not sufficient to compute accurate solutions. In another experiment the

potential-flow conditions on top and bottom boundaries of the domain were replaced

by uniform flow conditions. In that case a value of 1.97 was obtained for the bubble

NAVIER-STOKES ON COMPOSITE GRIDS 166

length; apparently, the top and bottom 'wall' boundary conditions do not exert a

strong influence on the bubble length.

Close-ups of the separation bubbles are presented in Fig. 8.26. It should be noted

that a very high degree of symmetry is obtained in the numerical solutions, despite

the fact that the problem is solved as a truly two-dimensional problem without a

symmetry plane. Velocity profiles for Re = 40 at various locations along the domain

are shown in Fig. 8.27. Reflections of the upper halves of these profiles, indicated

by dashed lines, are superimposed on the lower halves. Differences are negligible.

Fig. 8.28 shows the pressure profiles along the centerline of the self-overlapped
annular grid, and on a line perpendicular to the cylinder in the region of overlap

(Re = 10). Pressures from different parts of the computational domain, evaluated

at the same physical locations, are indicated by dashed lines and solid lines, respec-

tively. Excellent agreement is found between the two pressures in the overlap region.

Apparently,, the pressure communication scheme across grid interfaces works well.

In addition to the nonimensional bubble length we also compute the drag on the
cylinder as a function of the Reynolds number. The total-drag coefficient CD is the

sum of the viscous-drag coefficient CD,. and the pressure-drag coefficient CD,p . The
results of our computations (NEW) are presented, together with those of others',

in Tables 8.8, 8.9, and 8.10.

Table 8.8: Viscous.drag coefficients CD,, for circular cylinder

Re TH033' KAW66 COL73 NEW
10 1.5 1.3 1.29 1.36
20 0.9 0.8 0.87
30 0.7 0.67
40 0.6 0.54 0.55

Computation

A curve-fit, presented in [GRO64), gives the simple relation CD,, = 0.62-

12.6/Re for relatively large Reynolds numbers (Re > 40). Again the spread ill

the data is considerable. The drag coefficients for the composite-grid computations.

although somewhat large, agree well with the other results.

NAVIER-STOKES ON COMPOSITE GRIDS 167

Table 8.9: Presure-drag coefficients CDp for circular cylinder

Re TH0331 TH0332 KAW66 COL73 NEW
10 1.9 1.8 1.6 1.65 1.93
11 1.4
20 1.2 1.3 1.44
30 1.1 1.26
37 1.0
40 Comutaio 1 40 1.0 1.02 1.15

1 Computation

2 Experiment

Table 8.10: Total-drag coefficients CD for circular cylinder

Re WIE' THO33' KAW66 DEN70 COL73 NEW
10 3.0 3.4 2.9 2.9 2.94 3.29
20 2.5 2.1 2.1 2.0 2.31
30 2.4 1.8 1.93
40 2.1 1.6 1.5 1.56 1.68

Experiment by Wieselsberger, quoted from [SCH79]
2 Computation

In order to demonstrate the full power of the composite-grid strategy for this

geometry, an asymmetric problem is also solved. It concerns the same cylinder,

spinning at constant angular speed of 5/r Hz in a channel with solid walls. The

inflow condition is Poiseuille flow (Dirichlet), whereas the outflow condition is fully

developed flow again (Neumann). No-slip conditions are applied on top and bottom

walls. A close-up of the flow field around the cylinder for Re = 20 is shown in

Fig. 8.29. The Reynolds number in this case is based on the cylinder diameter and

the maximum inflow velocity. The channel width is 10 times the cylinder diameter.

Interestingly, the boundary layer remains attached and the rotation merely deflects

the flow. The drag coefficients in the flow direction are: CD,, = 0.79. CD.p = 1.23,

CD = 2.02, whereas the corresponding lift coefficients are: CL,,, = 0.14, CLr = 1.21.

CL = 1.35.

In another computation with a spinning frequency of 0.5/7r Hz anid a Reynolds

number of 40. the flow structure is hardly altered by the rotation. and two neatly

NAVIER-STOXES ON COMPOSITE GRIDS 168

symmetrical vortices are formed. Now the drag coefficients in the flow direction

are: CD,v = 0.49, CD,p = 1.00, CD = 1.49, and the lift coefficients are: CL,V = 0.01,

CLp = 0.12, CL = 0.13.

In both spinning cases the flow downstream of the cylinder returns to symmetry

very rapidly.

NAvIER-STOKES ON COMPOSITE GRIDS 169

Figure 8.1: Conservation law used on cell fragment to compute velocity

Figure 8.2: Overview of Osswald's asymmetrically constricted channel

Figure 8.3: Ovcriew of new asymmetrically constricted channel]

NAviER-STOKES ON COMPOSITE GRIDS 170

Close-up of grid near bump

Figurc 8.4: Single grid (truncated) for asymmetrically constricted channel

NAVIER-STOKES ON COMPOSITE GRIDS 171

Re 200 Re=300

- - - - - - - - -

.............

.........

Fiue85 ls-uso eaainbubebbidbm

NAVIER-STOKES ON COMPOSITE GRIDS 172

\ 0j N

, I
PC-

Figure 8.6: Log(characteristic lengths) versus log(Ro

NAVIER-STOKES ON COMPOSITE GRIDS 173

overlap

Figure 8.7: Composite domain (truncated) for asymmetrically constricted channel

o- overlap ON

Figure 8.8: Close-up of overlap region on composite grid

NAVIER-STOKES ON COMPOSITE GRIDS 174

1.125

1.0

U.o -%. ,,.. ----- Singe Sn

-S • .10 15. 20.

0.0

O.0

Pmfle w"r wal
--- Single id

-5$. . s. L. 20.

Figure 8.9: Horizontal velocities on single and composite grids

NAVIER-STOKES ON COMPOSITE GRIDS 175

Profile newr centerline

--- Left grid

Right grid

1.014.

U
1..012A

3.8 4.2 4.4 4.6 4.8 5. 5

0.02711-

V8 3.!2 4.4 4.6 4.3 5. V.2

0.0269. Profile near wall

--- Left gnd

0.0260- 24.

400 Right grid

Figure 8.10: Close-ups of horizontal Velocitie's in overlap region

NAVIER-STOKES ON COMPOSITE GRIDS 176

moving lid

outflow

inflow

Figure 8.11: Inflow and outflow on interface boundary

t
Unormal

1..

I I
r 8Ia I

Figure 8.12: Distribution of r aong interface: discrete switch

NAvIER-STOKES ON COMPOSITE GRIDS 177

t

Figure 8.13: Distribution of 7- along interface; smooth transition

NAVIER-STOKES ON COMPOSITE GRIDS 178

, -. - -- - - - - - -

? I , - ---------------

* I I I p - - - - - - - - - ' I~ J I

("b

I
-

/ b

* I I • . ' - - - . - I' / / /

Figure 8.14: Single-grid solution for lid-drien cavity

moving lid

K>
Dirichlet Neumann

Figure 8.15: Fixed boundary conditions on both sides of interface

NAVIER-STOKES ON COMPOSITE GRIDS
179

.-

.

.

Figuree f - . on

Figure 8.16: Flattened vortex for low-order approximations

NAVIER-STOKES ON COMPOSITE GRIDS 180

0.2-
A/

v 0 .1

A-

-0.3

Figure 8.17: Vertical-velocity profile for low-order approximations

0.2-A

A

A- A
0.2 0.4 0.4 0 .8

Figure 8.18: Vertical-velocity profile for high-order approx~mationis

NAvIER-STOKES ON COMPOSITE GRIDS 181

t

S

Figure 8.19: Steepened T-response to normal velocities

NAVIER-STOKES ON COMPOSITE GRIDS 182

Coarse Grid

Refinement

Figure 8.20: Reentrant chain of refined grids

Reentrant boundaries

a 0 0 0a 0 0 0 a

No a a 0 a °
P - node

\W 0 a C a08 0 0 a

a 0 0 0 0 0 0 0

o4 a 0 0 0 0 0 0

P - node I

Figure 8.21: Reentrant pressure nodes lacking on staggered grid

NAVIER-STOKES ON COMPOSITE GRIDS 183

Attached flow Steady separtion bubble/steady wake

Re< 5 5< Re <35

U-0- U-,'-

L

a b

Steady separation bubble / perturbed wake Karman vortex street

35< Re< 45 Re> 60

U F . i wsU-0n-

c d

Figure 8.22: Laminar flow regimes of circular cylinder in crossflow

NAVIEJL-STOKES ON COMPOSITE GRIDS 184

'potential flow'

uniform inflow Neumann outflow

44

Figure 8.23: Physical domain and boundary conditions for cylinder in crossfiovk

4 Exploded view

Figure 8.24: Composite grid for cylinder in crossflow (every 4 'h grid line sho-wii)

NAVIER-STOKES ON COMPOSITE GRIDS 185

0

+ >

0
+ x

c1-

Fre 8 . -
M ~

o+ U <Ox

el ei N - - o o €

Figure 8.25: Separation-bubble length versus Reynolds number

NAViER-STOKES ON COMPOSITE GRIDS 186

Re =30
Re 10

%.%

'--~ Re =20 iZ u- ~Re =40

Computed olution -- - -Refecio

~~L N. L. a ,

Figure 8.2: Clrioe-psoitseprtins bubbl cbein cylinder

NAVIER-STOKES ON COMPOSITE GRIDS 187

Double profile
0. in overlap

I

0.4

0.3-

.4.. 0.

S - '

I
p

C\

0.. ., 0\ 0.

c ..z~J

Double profile o.dl U1~i overlap 2

0: 6 0, 0:60

Figure 8.28: Pressure profiles on self-overlapped annular grid

NAVIEIL-STOKES ON COMPOSITE GRIDS 188

Figure 8.29: Close-up of flow field around spinning cylinder

Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary and Conclusions

In this study we have presented ways of computing accurate solutions to the incom-

pressible, steady, two-dimensional Navier-Stokes equations on geometrically com-

plex domains. The approach was to dissect the domain into pieces of simple shape

that were fitted with grids independently. The resulf is called a composite grid.

Communication between the component grids takes place through interpolation. If

no special care is taken, this interpolation is not conservative, which limits the final

degree of convergence that can be attained.

Different types of intergrid boundary conditions were investigated, namely Diri-

chlet everywhere (SWAP = SchWVarz Alternating Procedure), and Dirichlet/Neu-

mann on different sides of interfaces (SWAPR = SWAP-Revised). SWAPR of-

fers the perspective of full conservation if no overlap between subdomains occurs.,

whereas SWAP always requires overlap and hence is nonconservative. However.

two-dimensional Navier-Stokes computations revealed that low order of accuracy

of Neumann-boundary-condition implementation and of interpolation degrades the

accuracy of SWAPR results, whereas higher order of accuracy leads to poorly con-

verging iterative procedures. Consequently, SWAP was chosen as the basic commu-

nication procedure for composite-grid calculations.

As the aim of this project was to extend the solution-adaptive mesh refinement

techniques, described in [BER82], [CAR85], [SKA87], to geometrically complex do-

mains, a scenario for combining composite grids and adaptive grids was presented.

A careful analysis was made of the necessary ingredients of an adaptive-composite

procedure, but no implementation was provided.

189

CONLUSIONS 190

The construction of a composite grid was found to be a nontrivial task which

should be automated as much as possible to unburden the am. For this purpose

a grid-generation system was designed, called M*E*S*H, which has as output the

complex data structures describing a composite grid. M*E*S*H itself was not im-

plemented, but a preprocessor that 'digests' the essentially continuous M*E*S*H

output was, demonstrating the effectiveness of the composite-grid data structures.

An essential component of the flow simulation program is the Navier-Stokes

solution procedure for a single, curvilinear, nonorthogonal grid. Such a procedure

was developed for a modified staggered grid, which has the important properties

that pressure nodes are never needed on the boundary, and that the difference

stencil is compact, leading to greater accuracy than the standard staggered grid.

It was also shown that spurious pressure oscillations can easily be removed by an

averaging or filtering method. Writing the discretized equations in matrix form led

to increased insight in classical solution procedures, such as SIMPLE, SIMPLER,

and PRIME. A convergence proof for the latter when Re -+ 0 was given using a

result from optimization theory. PRIME was identified as the simplest and most

natural iterative method. It also was the most robust method on curved, nonuniform

grids, and was therefore selected as the solution procedure for realistic composite-

grid calculations. To validate the Navier-Stokes solver, the flow in a U-shaped

channel was calculated, which exhibits a large turning angle. Computed results

match asymptotic solutions available for the flow in the bend very well.

To test the composite-grid procedure, three different geometries were consid-

ered: an asymmetrically constricted channel, the lid-driven cavity, and the cylinder

in crossflow. The asymmetrically constricted channel, inspired by work by Osswald

OSS83], was chosen because asymptotic analyses of upstream and downstream dis-

turbances were available. It was found that the upstream length scale is proportional

to Re1/7, whereas the length of the separation region behind the constriction, which

is a measure of downstream length scales, is proportional to Re. This conforms with

the findings of Smith [SM177], and partially disproves those of Kumar and Yajnik

[KUM80]. Composite-grid solutions using SWAP were obtained at almost the same

cost as single-grid solutions.

CONLUSIONS 191

The lid-driven cavity was chosen because it features inflow and outflow on a

single grid boundary. It was shown that a local version of SWAPR, which lets the

choice of Neumann or Dirichiet boundary conditions depend on the local velocity

normal to the boundary, can be made to work for nonoverlapping grids. However,

its efficiency was poor. This was attributed to the reduced convergence rate of

the Navier-Stokes solver used in case of higher-order-accurate Neumann boundary

condition implementation. SWAP, on the other hand, yielded accurate solutions

very efficiently.

Finally, the cylinder-in-crossflow problem was selected because it involves a non-

simply-connected domain, thus making a composite-grid approach necessary. More-

over, the problem of inconsistent pressures on reentrant grids, arising from the lack

of pressure boundary points, had to be tackled. A strategy was developed to incor-

porate the communication of pressure values across grids in the SWAP procedure,

which eliminates discrepancies in the pressure at convergence. The results that were

obtained for the length of the separation bubble in the wake of the cylinder were

in good agreement with measurements and other computations. No problems were

experienced with nonconservation due to interpolation.

Hence, it is concluded that accurate solutions to the steady, incompressible

Navier-Stokes equations can be computed efficiently using overlapping composite

grids.

9.2 Recommendations

Avenues for extension and completion of the present method abound. The de-

signed M*E*S*H system should be built, using a novel language VORPAL (Value-

ORiented ProgrAmzning Language) now under development at Stanford. In ad-

dition, the strategy outlined for making the composite-grid procedure solution-

adaptive should be implemented and refined. Extending the method to three space

dimensions, although not difficult conceptually, leads to interesting geometrical

problems which need to be addressed. In order to make SWAPR more competitive.

efforts should be made to speed up convergence of the basic Navier-Stokes solver,

CONLUSIONS 192

probably by implementing a multigrid procedure. If the method is to be used for

practical engineering calculations, a turbulence model should also be incorporated.

Appendix A

SAMPLE COMPOSITE-GRID DATA FILE

Here we present a data file that has been used to compute the flow in the lid-driven

cavity. The composite grid has two equal-sized components that overlap by 20%. A

successful computation taking 1.4 work units has been carried out using this data

file.

SAMPLE DATA FILE

This file contains the information which specifies a composite ;rid,
consisting of two rectangular grids which together cover the unit
square. The overlap is 20 percent of the area of the square. Boundary
conditions specify cavity flow. Every line in this data file is read
by a preprocessor to the computational program, starting from "SAMPLE
DATA ... ". Curve and boundary condition identification numbers refer
to subroutines in the files "stdfun" (standard functions) and "bcfun"
(boundary condition functions). Shortened versions of these files are
included in this appendix. For more complicated computations, such as
the flow around a circular cylinder, stdfun and bcfun contain many
subroutines, which makes changing geometry and boundary conditions
very easy once a basic composite grid has been defined.

Note: Keywords in this file are "Structure:" and "Entry.". They signal
the start of now pieces of information. Other indentifiers, such
as "End", "number". "part", or blank space (indentation) are
ignored; they are used to make the data file more readable.

Structure: ****** COMPOSITE-GRID Nee*** lame: CAVITY

Structure: CURVE-SET
entry: total number of curves in the composite grid
6

Stru_.ure: CURVE (number 1)
This curve is used for te bottoms of the two grids
entry: type of curve
standard
entry: curve identification (straight line segment)
I
entry: 4 parameters, specifying begin- and end-point-coordinates
4 9.0 0.0 1. 0.0
entry: affine transformation (identity in this case)
1.0 0.0 0.0 1.0 0.0 0.0
entry: total number of subcurves in the curve
3

Structure: SUBCVRVE (number I)
entry: numerical role of the subcurve

193

SAMPLE DATA FILE 194

physical
entry: boundary condition identification
4
entry: parameter interval subcurve occupies within curve

End ift V~
Structure: SUBCVRV (number 2)

entry: numerical role of 4e aubcurve
physical
entry: boundary condition identification
4
entry: parameter interval subcurve occupies within curve
OJLQ 060

Structure: SUBCVRLV (nimber 3
entry: numerical role of thesubcurve
physical
entry: boundary condition identification
4
entry: parameter interval subcurve occupies within curve
0.60 1.0

nd YkBCURVE

Strwcture: CURVE (number)
This curve is used for the tops of the two grids
entry: type of curve
standard
entry: curve identification (straight line segment)
I
entry: 4 parameters, specifying begin- and end-point-coordinates
4 0.0 1.0 1.0 .Qn
entry: affine transformation identity in this case)
1.0 0.0 0.0 1.0 0.0 0.0
entry: total number of subcurves in the curve
3

Structure: SUBCVRV (number 1)
entry: numerical role of the subcurve
physical
entry: boundary condition identification
I
entry: parameter interval subcurve occupies within curve
0.0 0.40

End SUBCURVE

Structure: SUBCURVE (number 2)
entry: numerical role of the subcurve
physical
entry: boundary condition identification
I
entry: parameter interval subcurve occupies within curve

End 0 ACURV .60
Structure: SUBCRVE (number 3)e

entry: numerical role of t subcurve
physical
entry: boundary condition identification
I
entry: parameter interval subcurve occupies within curve

F.d S CU R4 O

End E6MRCOd
Str.cure: CURVE (number 3)

his curve is used for the left boundary of the left grid
entry: type of curve
standard
entry: curve identification (straight line segment)

SAMPLE DATA FILE 195

entry: 4 paraneters, specifying begin- and and-point-coordinates

entry: afi2netransoration ?identity in this case)
1.0 0.0 0.0 1.0 0.0 0.0
entry: total number of subcurves in the curve
1

Structure: SUBCVR
entry: nuasraca- role of the subcurve
physical
entry: boundary condition identification
4
entry: parameter interval subcurve occupies within curve (whole)
O0 0 o

End R
T CURVE (is used Tor the right boundary of the right grid

entry: type of curve
standard
entry: curve identification (straight line segment)
1
entry: 4 parameters, specifying begin- and end-point-coordinates
4 1.0 0.0 1.0 10identity in this case)
entry: affine transformation
1.0 0.0 0.0 1.0 0.0 0.0
entry: total number of subcurves in the curve
1

Structure: SUBCURVIE
entry: numerical role of the subcurve
physical
entry: boundary condition identification
4
entry: parameter interval subcurve occupies within curve (whole)
0.0 1.0

End SUBCURVE
End CURVE

Struc~ure: CURVE (number 5)
This curve is used for the left side of the right grid
entry: type of curve
standard
entry: curve identification (straight line segment)
1
entry: 4 parameters, specifying begin- and end-point-coordinates
4 0.40 0.0 0.40 1.0
entry: affine transformation (identity in this case)
1.0 0.0 0.0 1.0 0.0 0.0
entry: total number of subcurves in the curve
I

Structure: SUBCURVE
entry: numerical role of the subcurve
auxiliary
entry: parameter interval subcurve occupies within curve (whole)

End OBCUVE;
End CURVE

Strgcturo: CURVE (number 6)
Tis curve is used for the right side of the left grid
entry: type of curve
standard
entry: curve identification (straight line segment)
I
entry: 4 parameters, specifying begin- and end-point-coordinates
4 0.60 0.0 0. 00 .0
entry: affine transformaiion identity in this case)
1.0 0.0 0.0 1.0 0.0 0.0

SAMPLE DATA FILE 196

entry: total number of subcurves in the curve
1

Structure: SBC.VR
entry: menra role of te subcurve
auxiliary
entry: parameter interval subcurve occupies within curve (whole)
0.0 CU1.0

End SB VE;

EndCVPS~T

Structure: GRID-SET
entry: type of SWAPR procedure (discrete switch)
I
entry: total number of grids in the composite grid
2

Str cturg: GKID (number 1)
Tis Is the left one of the two grids in the system
entry: status of the grid
consistent
entry: geometrical type of the grid
quadrilateral
entry: number of sides in the grid
4

Strncturq: SIDE (number 1)
This is the bottom side of the left grid
entry: number of subcurves composing the side
2

entry: parameter interval of FIRST subcurve within side
0.0 0.6666666666
entry: number of curve on which the subcurve resides
I
entry: sequence number of subcurve within this curve
I

entry: parameter interval of SECOND subcurve within side
0. 6666666666 1.0
entry: number of curve on which the subcurve resides
I
entry: sequence number of subcurve within this curve
2
entry: number of subsides in the side

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)
0.0 1.0

Enj SUBSIDE
str nturl: SIDE (number 2)

Tis is the top side of the left grid
entry: number of subcurves composing the side
2

entry: parameter interval of FIRST subcurve within side
0. 0 0.666866666
entry: number of curve on which the subcurve resides
2
entry: sequence number of subcurve within this curve
I

entry: parameter interval of SECOND subcurve within side
0.6666666666 1.0
entry: number of curve on which the subcurve resides

SAMPLE DATA FILE 197

2
entry: sequence number of subcurve within this curve
2
entry: number of subsides in the side
I

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)

Strucfurg: SDE. (number 3)
This is the left ade of the left grid
entry: number of subcurve composing the side
I
entry: parameter interval of subcurve within side (whole side)
0.0 1.0
entry: number of curve on which the subcurve resides
3
entry: sequence number of subcurve within this curve
1
entry: number of subsides in the side
I

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)
0.0 1.0

End SUBSIDE

Str'c.urq: SIDE (numbe 4).
This is the right side of the left grid
entry: number of subcurves composing the side
1
entry: parameter interval of subcurve within side (whole side)
0.0 1.0
entry: number of curve on which the subcurve resides
6
entry: sequence number of subcurve within this curve
1
entry: number of subsides in the side
1

Structure: SUBSIDE
entry: numerical role of the subside
interpolation
entry: number of candidate donor grids
I
entry: list of candidate donor grids + geometrical connections
2 overlap
entry: parameter interval of subside within the side (whole side)

entry: number of grid cells in both directions
12 20
entry: stretching direction

egrid is shrunk towards the lid in order to capture steep gradients
entry: shrinking direction
eta
entry: shrinking parameters
2.0 1.0
entry: type of grid mapping (transfinite)

SAMPLE DATA FILE 198

transfin
entry: order of transfinite interpolation (Coons Patch)

End1 GRID

Strurq: G..D (nber,2)
is is the right one of the two grids in the system

entry: status of the grid
consistent
entry: geometrical type of the grid
quadrilateral
entry: number of sides in the grid
4

Strtur : (of the r,,tmgrihis s the b~ttOm oil* o* e iht grid
entry: number of subcurves composing the side
2

entry: parameter interval of FIRST subcurve within side
0.0 0.3333333333
entry: number of curve on which the subcurve resides
1
entry: sequence number of subcurve within this curve
2

entry: parameter interval of SECOWD subcurve within side
0.3333333333 10
entry: number o'curve on which the subcurve resides
1
entry: sequence number of subcurve within this curve
3
entry: number of subsides in the side
I

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)

Endd 0UBSIDEndSIDE

Stry1gure: SIDE (number 2)
is is the top side of the right grid

entry: number of subcurves composing the side
2

entry: parameter interval of FIRST subcurve within side
0.0 C.3333333333
entry: number of curve on which the subcurve resides
2
entry: sequence number of subcurve within this curve
2

entry: parameter interval of SECOND subcurve within side
0.33333 3333 1.0
entry: number of curve on which the subcurve resides
2
entry: sequence number of subcurve within this curve
3
entry: number of subsides in the side
I

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)

OndE.01.0End S D
UBS DE

SAMPLE DATA FILE 199

Strnjgur,: S ,DE,(nubr3
2. a t t side of the right grid

entry: number of subcurves composing the side
I
entry: parameter interval of subeurve within side (whole side)
0.0 1.0
entry: number of curve on which the subcurve resides
6
entry: sequence number of subcurve within this curve
I
entry: number of subsides in the side
1
Structure: SUBSIDE

entry: numerical role of the subside
interpolation
entry: number of candidate donor grids
1
entry: list of candidate donor grids + geometrical connections
I overlap
entry: paramster interval of subside within the side (whole side)
0.0 1.0

End SUBSIDE
End SIDE

Structure: SIDE (number 4)
This is the right saide of the right grid
entry: number of subcurves composing the side
I

entry: parameter interval of subcurve within side (whole side)
0.0 1.0
entry: number of curve on which the subcurve resides
4
entry: sequence number of subcurve within this curve
1
entry: number of subsides in the side
I

Structure: SUBSIDE
entry: numerical role of the subside
physical
entry: parameter interval of subside within the side (whole side)
0.0 1.0

End 0i
SIDE

entry: number of grid cells in both directions
12 20
entry: stretching directionno
he grid is shrunk towards the lid in order to capture steep gradients
entry: shrinking direction
eta
entry: shrinking parameters
2.0 1.0
entry: type of grid mapping (transfinite)
transf in
entry: order of transfinite interpolation (Coons Patch)

Structure: GLOBAL-ITERATION
entry: type of iteration
manual
entry: length of iteration chain, plus actual chain2

End GLOBAL ITERAtION
End COMPOSITE-GRID

a

SAMPLE DATA FILE 200

Next follow the files 'stdfun' and 'bcfun' that contain functions specifying stan-

dard curves and boundary conditions, respectively. Use has been made of the

Fortran 'computed-goto' statement to obtain an easily extendable structure.

cCCCccccccccCccccccCCccccccccCccCccccccCcccccccccccccCcccCcCccccccccccccccc
C

SUBROUTINE STDFUI C

~This suruiecnan h ecitoso tnadcre ihwhich
C a set of parameters must be supplied. C

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC

subroutine STDFU(a, id, cparm, flag, x, y, dxds, dydas, maxCPR)
integer mazCPR, id, flag
real*8 s, cp(rmmaxCPR), z, y, dids, dyds

c s - variable running along the curve
c id - curve ident*f*cation number
c cparm - array containing curve parameters
c flag - if -- > return coordinates on the curve
c if 2 -- > return tangential derivatives
c x, y - Cartesian coordinates
c dx/yds - tangential derivatives
c axCPR - maximum number of curve parameters

c Jump to the label corresponding to the curve identification number.
c One danger exists with the following computed gets statement: if the
c argument 'id" is not in the proper range of integers from I to 9
c the f*rst in the list of labels is used. Therefore we need to do an
C additional check when a jump to label I occurs.

go to (1, 2, 3, 4, S, 6, 7, 8, 9) id

c When a jump to label 1 occurs, we first check if the original
c identification number was indeed 1. This is done most easily by
c adding 1 to id and jumping to a label in another computed goto
c list. If id was 1, then the jump will take place to the second
c label in the list because of the addition of 1. If id was any-
c thing else than one, then a jump will occur to the first label
c in the list, upon which the program will be terminated

1 goto (200,300) id 1
200 print *, 'Wrong standard curve identification number: id ', id

stop

300 call ONE(s, cparm, flag. x, y, dxds, dyds, maxCPR)
return

2 call TWO(s, cparm, flag, x, y, dxds, dyds, aaxCPR)
return

3 cont*nue
cont nue
con nue
cont ;hue

7 continue
8 continue
9 continue

print o, 'Illegal standard curve identification number', id

stop
end

subroutine ONE(s. cparm, flag, x, y, dxds, dyds, maxCPR)

SAMPLE DATA FILE 201

integer mazCPR. flag
reale8 a, cparm(mazCPR), x, y, dzds, dyds, del•, dely

c This routine creates a line segment from (•1.y1) to (z2,y2)

c PARAMETER DESCRIPTIOI

c 1 -> 1
c2 -> yl

c~

delz = cpa--(3) - cparmCl)
dely a cparm(4) - cparm(2)
if (flag .eq. I) then

x a cparm(l) + s * delx
y a cparmC2) + s * dely

*Is ds a delx
dyds = dely

endit

return
end

subroutine TWO(a. cparm, flag, x, y. dzds, dyds. maxCPR)

integer maxCPR, flag
reale8 a, cpar(maxCPR), x, y, dxds. dyds, delalp, theta,

c This subroutine creates a circle segment with an arc ranging from
c alphal to alpha2 and a radius of R. The center is (xc,yc). When
c the parameter 'degree' is larger than zero, all angles are
c interpreted in degrees. Otherwise, radians are used. For this
c purpose we use a conversion factor 'con,' from degrees to
c radians (i.e. (pi/4) / 45), or from radians to radians (i.e. 1)

c PARAMETER DESCRIPTION

c 1 -> alphal
c 2 -> alpba2
c 3 ->xc
c 4 ->yc
c 6 ->R
c 6 -> degree

if (cparn(6) .gt. O.dO) then
conv= datan(l.d0) / 45.dO

else
; onv 1.dO

endif

delalp = cparm(2) - cparm(1)
theta = (cparm(l) + s * delalp) e cony
if (flag .eq. 1) then

x a cpari(3) + cparm(5) 0 dcos(theta)

y = cparm(4) + cparu(5) * dsin(theta)
else

dxds = -cparm(5) * dsin(theta) * delalp
dyds = cparm(5) * dcos(theta) e delalp

endif

return
end

4

SAMPLE DATA FILE 202

FCCCCCCCCCCCCCCCCCCCC cccccccccccccccccccccccccccccccccccccccCcccccCCCCCCCCc

This~SBRUTV suruiecnan BCFUII
the specifications of the boundary conditions

C for all the subcurves that are on a physical boundary of the domain and
C that are not on periodical boundaries. C

sccE
subroutine BCFUN(a, x, y, id, Abc, Bbc, Cbc, Fbc)
real*8 a, Abc(2,2), Bbc(2.2), Cbc(2.2). Fbc(2), x, y
integer id

c a - variable running along curve
c xy - cartesian coordintes on curve
c id - boundary condition identification number
c Abc, Bbc, Cbc, Fbc - coefficients of linear boundary condition:
c
C Abc u + Bbc du/d(xsi) + Cbc du/d(eta) z Vbc

c Jump to the label correspondiny :e boundary condition (be)
c identification number.
C one danger exists with the Illoving computed goto statement: if the
c argument "id" is %at in the proper range of integers from 1 to 9
c the fIrst in the list of labels is used. Therefore we need to do an
c additional check when a jump to label I occurs.

goto (1, 2, 3, 4, S, 6, 7. 8, 9) id

c When a jump to label I occurs, we first check if the original
c identification number was indeed 1. This is done most easily by
c adding I to id and jumping to a label in another computed goto
c list. If id was 1, then the jump will take place to the second
c label in the list because of the addition of 1. If id was any-
c thing else than one, then a jump will occur to the first label
c in the list, upon which the program will be terminated

1 goto (200,300) id+!
200 print 0, 'Wrong bc identification number: id id

stop

300 call bONE a 5, x, y, Abc, Bbc, Cbc, Fbc)
return

2 call bTWO (s, x, y, Abc, Bbc, Cbc, Fbc)
return

3 cont;nue
4 cout.nnue
5 continue
6 continue
7 cont*nue
8 cont;nue
9 continue

print e, 'Illegal bc Identification number', id

stop
end

subroutine bOJE(a. x, y, Abc, Bbc, Cbc, Fbc)
real*8 s, Abc(2,2), Bbc(2,2), Cbc(2.2), Fbc(2). x, y
integer i, j

c This routine sets up Dirichlet no-slip conditions

do 10 i r 1, 2

SAMPLE DATA FILE 203

do 20 jc1, 2
Abc(i~j) = 0.dO
Bbc~i,j) a 0.dO
Cbc~i,j) a O.dO

20 cqntinue
10 continue

Abc(l,1) - 1.dO
Abc(2,2) - 1.dO
Fbc(1) a 0.dO
FbcC2) a O.dO
return
end

subroutine bTWOC a, x. y. Abc, Dbc, Cbc. Fbc)
real*B a, AbcC2,2). BbcC2,2). CbcC2.2), Fbc(2), z, y
integer i, j

c This routine sets up Dirichlet uniform, horizontal flow
c conditions

do 10 i= 1, 2
do 20 j 1.2

AbcC±,j) O .dO
Bbc(i.j) = .dO
Cbc~i,j) = .dO

20 continue
10 continue

Abc(l,1) = 1.dO
Abc(2,2) = 1.dO
Fbc~l) = 1.dO
Fbc(2) = 0.dO
return
end

Appendix B

M*E*S*H SYSTEM FUNCTIONS

In this appenix the M*E*S*H system functions are presented. Starting from a root

mode, we describe all the successive modes, which are arranged in a tree structure.

Tools and commands are discussed within their pertinent modes. The nesting of

modes, reminiscent of the UNIX directory structure, is indicated typographically

in UNIX style, e.g., /MESH/CURVE/COPY signifies that COPY is a submode of

CURVE, which in turn is contained in MESH.

As ZOOM and SHOW can be invoked at any point in the system, they will not

be mentioned in any specific mode, but separately at the end of the list of system

functions. An overview of all the system functions is given on the last page of this

appendix.

MESH

The root mode in which we are placed upon entering the program is called

MESH. No commands may be given and no tools can be invoked.

Submodes: CURVE, GRID, OBJECT, ORDER, FILE

MESH/CURVE

When operating on a specific curve, this curve first has to be identified. During

creation (see DEFINE) every curve receives a sequence number, and (optionally) a

user-supplied name. Thus, when M*E*S*H is asked to perform an operation on a

particular curve and replies by requesting identification of that curve, the user may

204

M*E*S*H SYSTEM FUNCTIONS 205

type its name or sequence number. Otherwise, the mouse shouJ- _ "U to the

pertinent curve (proximity test).

Submodes: DEFINE, MODIFY, MOVE, COPY, SUBCURVE

Commands: CLEAR, DELETE

CLEAR Remove the subdivision of the curve into subcurves (leaving only

one subcurve corresponding to the whole curve intact, which is assigned the

role 'auxiliary')

DELETE Remove the curve from the database

MESH/CURVE/DEFINE

Submodes: STANDARD, USERDEF

Tools: HEP.ITE, BEZIER, SPLINE

HERMITE Define an Hermitian-interpolation polynomial, using two points, two

slopes, and two tuning parameters

BEZIER Define a B~zier interpolation polynomial

SPLINE Fit a spline function through a set of points

MESH/CURVE/DEFINE/USERDEF

This mode is used to select curves that have been specified by the user on a

separate file (user-defined functions). The user may request an overview of the

available functions.

| | | | | |

M*E*S*H SYSTEM Fu TcioNS 206

MESH/CURVE/DEFINE/STANDARD

This mode is used to select curves using standard functions whose parameters

are to be specified. Although the parameters of the functions are stored internally

in a fixed format, such as center, radius, and arc of a circular segment, the user can

specify them in a number of ways. In the above example, one may wish to supply

the center of the circle plus the two points on the circle that bound the arc. This

information is translated by the system into the standard representation. Only a

small number of conceivable standard functions is listed here. The user may request

an overview of the available functions.

Tools: STRAIGHT, CONICAL, POLYNOM

STRAIGHT Construct a straight line segment

CONICAL Construct a conical section (circle, ellips, hyperbola, parabola)

POLYNVOM Construct a polynomial curve

MESH/CURVE/MODIFY

This mode is used to effect certain changes to curves that are not within the

MOVE category, and which do not necessitate the redefinition of curves.

Tools: PARM, TRIM

PARM Change the numerical parameters of a certain curve

TRIM Trim a curve by restricting its running parameter

MESH/CURVE/COPY (MOVE)

This mode is used to define new curves by copying old ones and subjecting
them to an affine transformation (note: an affine transformation (P, q) maps points

M*E*S*H SYSTEM FUNCTIONS 207

r () into F = (through F = Pr + q. P is a (2x2)-matrix and q is a (2x1)-

column vector. Together they are defined by six constants).

MOVE: Same as COPY, but remove old curve after construction of the new curve.

Tools: FIT, SHIFT, ROTATE, SHRINK, MIRROR, AFFINE

FIT Fit a curve between two given points by restricted affine transforma-

tion (uniform shrinkage, then rotation, and then translation, i.e., a similarity

transformation)

SHIFT Simple parallel displacement

ROTATE Rotate through a given angle about a specified center of rotation

SHRINK Multiply with respect to a given geometrical center

MIRROR Reflect in a given line

AFFINE Specify the six parameters of a general affine transformation explic-

itly

MESH/CURVE/SUBCURVE

Within a curve we distinguish subcurves, which are sections of the curve. One

subcurve with role NONE is associated with every curve by default. A meaning-

ful subdivision into subcurves is brought about by manipulations of endpoints of

subcurves on the curve.

Submodes: BCS

Commands: SPLIT, MOVE, MERGE, ROLE, CLEAR

SPLIT Introduce new subcurves by splitting an old subcurve into two

M*E*S*H SYSTEM FUNCTIONS 208

MOVE Move an endpoint along a curve (not to cross other subcurve bound-

aries, in which case MERGE must be used)

MERGE Join two subcurves by removing one common endpoint

ROLE Give a nontrivial role (i.e., periodic, physical, or auziliary) to a

subcurve

CLER Clear a subcurve of its role and erase all pertinent information, such

as boundary-condition ID, donor grid, etc.

MESH/CURVE/SUBCURVE/BCS

On a subeurve boundary conditions of mixed, linear type (Robin problem) may

be imposed. These can be obtained in various ways, depending on the source of

the conditions (physical or periodic boundary condition, or conditions interpolated

from another grid; the former two are defined in the BCS mode).

Tools: PHYSICAL, PERIODIC

PHYSICAL The user may specify constants defining the linear, mixed-conditions

formulation interactively. More sophisticated boundary conditions must be

specified by referring to a (predefined) Fortran function on a separate boundary-

condition file (bcfun)

PERIODIC When periodic conditions are imposed, the user must indicate where

in space the -linear- boundary condition operator must be evaluated. Effec-

tively, an affine transformation linking the subcurve under consideration to

an image must be defined. Boundary conditions for a specific point are then

obtained by applying the boundary condition operator to the solution in the

image point. The affine transformation can be specified explicitly numerically,

or by constructing it using the facilities described under COPY

M*E*S*H SYSTEM FUNCTIONS 209

MESH/GRID

In this mode a component grid is constructed or changed.

Submodes: CHECK, DEFINE, MODIFY, SIDE

Commands: DELETE

DELETE Remove the definition of a grid from the database, keeping the con-

stituting curves and/or subcurves intact

MESH/GRID/CHECK

In this mode checks are performed to determine the quality of a grid. The
consistency check is mandatory, but need only be performed once the grid has been

defined completely. The folding check is more expensive to perform. It should only
be invoked when the chance exists that a grid mapping become singular.

Commands: LOGIC, FOLDING

LOGIC Check if a grid is defined in a consistent way, i.e., if logically in-
tersecting sides really intersect. If not, an error message is issued. Other

parameterization issues are solved by the system, such as parameters run-
ning in the wrong direction, or mappings defining a left-handed curvilinear

coordinate system. The grid is marked for consistency after the check

FOLDING Check if the Jacobian of the mapping of the grid becomes singular

MESH/GRID/DEFINE (MODIFY)

M*ES*H SYSTEM FUNCTIONS 210

In this mode a new grid is defined. Mode MODIFY, which can also be invoked

in GRID, does exactly the same as DEFINE, but operates on the definition of an

already existing grid.

Submodes: SIDE

Tools: STRETCH, CELLS, MAPPING, ORIGIN

STRETCH Define stretching (or shrinking) functions on the grid

CELLS Specify the number of mesh cells in both directions

MAPPING Choose a mapping for the grid (Coons patch, isoparametric macro-

element)

ORIGIN Supply the origin of the local curvilinear coordinate system in terms

of absolute z, y-coordinates (this pins down the relative locations of the sides

of the grid, once the sides are defined)

MESH/GRID/DEFINE/SIDE

In this mode functional and geometrical operations on grid sides (including

creation and elimination) are performed.

Submodes: GEOMETRY, FUNCTION

Commands: DELETE, CLEAR

DELETE Remove the side definition if unsatisfactory. This does not mean

that curves or subcurves are affected!

CLEAR Remove the subdivision into subsides and set the role of the only

remaining subside to NONE, i.e., the definition of the side is reset functionally.

but not geometrically

M*ES*H SYSTEM FUNCTIONS 211

MESH/GRID/SIDE/DEFINE/GEOMETRY

In this mode a list of subcurves specifying a grid side is manipulated (geometrical

definition).

Submodes: CONNECT

Tools: SUBCURVE, CURVE

SUBCURVE Add a specific subcurve to or delete it from the list describing the

side

CURVE Identify all the subcurves comprising a whole curve at once, and add

them to or delete them from the list of subcurves describing a side

MESH/GRID/DEFINE/SIDE/GEOMETRY/CONNECT

In this mode important information regarding grid metrics is defined. If a grid

side consists of exactly one curve or subcurve, it is obvious for an algebraic grid

generator to let the s-interval in computational space parameterizing that side (i. e.,
a : 0 -+ 1) correspond linearly to the z-interval parameterizing the pertinent curve

or subcurve. So if z runs from z0 to zi, we compute z = zo + a * (z - zo). The

situation becomes ambiguous when subcurves on different curves make up a side.

Then there is no obvious unique mapping from a to z. If there are N adjacent

subcurves making up the side, then the continuity requirement along that side with

respect to the corresponding a-parameter intervals {(s,, se,)E NL is just: s8, = s+J

(naturally, there are also the consistency requirements a,, = O,sN, = 1,si, 9 0.

However, this means that curve speed (rate of change of arc length along a side

as a increases) may be discontinuous across subcurve interfaces. In general this is

undesirable.

CONNECT provides the possibility of computing these a-parameter intervals

automatically and obtaining a globally continuous curve speed. When defining the

M*E*SH SYSTEM FUNCTIONS 212

intervals by hand, the CO continuity requirement is enforced by allowing the user

only to specify a-parameter values at subcurve interface points (nodes), rather than

intervals.

Tools: MANUAL

Commands: AUTO

MANUAL The user may point to interior nodes and supply a-values

AUTO The a-values are computed automatically to ensure continuous curve

speed

MESH/GRID/Dr ZiNE/SIDE/FUNCTION

In this mode the functional definition of grid sides is given. This comes down

to dividing grid sides into functionally monolithic segments called subsides, which

play exactly one numerical role. Initially, every side consists of one subside with

the dummy role NONE.

Tools: LOCATION, ROLE

Commands: SPLIT, MOVE, MERGE, CLEAR

LOCATION Name the relative location of the side (left, right, etc.)

ROLE Assign a nontrivial role to a subside, i.e., interpolation, physical.

periodic or reentrant

SPLIT Introduce new subsides by splitting an old subside into two. The

roles of the new subsides are the same as the role of the parent subside

MOVE Move an endpoint along a side (not to cross other subside bound-

aries, in which case MERGE should be used). Roles remain unchanged

M*E*S*H SYSTEM FUNCTIONS 213

MERGE Forge two subsides together by removing one comon endpoint. If

the respective roles of the old subsides were the same, then this will be the

role of the newly synthesized subside. NONE otherwise

CLEAR Set the role of a certain subside equal to NONE

MESH/OBJECT An important feature of M*E*S*H is that larger structures can

be built from simple elements, which can subsequently be embedded in yet larger
structures. Thus, a hierarchical system of structures called objects can be created.

The main benefit of objects is that they can be moved or copied as entities without

referring to their atomic constituents. The computational program processing the

output of M*E*S*H ignores objects; it only uses the definitions of curves and grids.

Submodes: DEFINE, MODIFY, MOVE, COPY

Commands: DELETE, CLEAR

DELETE Delete an entire object, including all its constituents. This poten-

tially destructive feature should be adequately protected

CLEAR Remove the definition of an object from the database without chang-

ing its constituents (in other words: unrpack the object)

MESH/OBJECT/DEFINE (MODIFY)

In this mode an object is assembled. Note: the constituents of the object itself

remain untouched. MODIFY does the same as define, but works on the definition

of an already existing object.

Tools: CURVE, GRID, OBJECT

M*E*S*H SYSTEM FUNCTIONS 214

CURVE Identify a curve and add it to or delete it from the definition of the

object

GRID Identify a grid and add it to or delete it from the definition of the

object

OBJECT Identify another object and add it to or delete it from the definition

of the object

MESH/OBJECT/COPY (MOVE)

In this mode a whole object is copied using an affine transformation (see above).

MOVE works similarly, but the original object is not retained.

Note: The MOVE utility does change the definitions of the constituents of the

object.

MESH/ORDER

This mode enables the user to specify the order in which component grids will be

traversed while performing SWAP(R) iterations. In principle, the list is unbounded

and a particular grid may appear any number of times.

Submodes: DEFINE, MODIFY

Commands: CHECK

CHECK Check if a grid sequence is legal, and, if so, if it is complete, i.e., if

all the grids in the composite grid are visited at least once

MESH/ORDER/DEFINE (MODIFY)

DEFINE is used to specify a new list, whereas MODIFY changes an existing

grid sequence.

M*E*S*H SYSTEM FUNCTIONS 215

Tools: ALGORITHM, MANUAL

ALGORITHM Select a standard traversal algorithm

MANUAL Specify a traversal list by hand

MESH/FILE

This mode enables the user to save information on a file during the session, and

to load information from a file.

Tools: LOAD, WRITE, OWRITE

LOAD Read grid-generation data from a file

WRITE Write the current grid-generation information to a new file. A dis-

tinction is made between files that will be reused in another M*E*S*H session,

and those that are going to serve as input for the computational program

OWRITE Same as WRITE, but now an already existing file is overwritten

SHOW, ZOOM

The ZOOM tool is purely graphical and allows the user to get a close-up view

of parts of the composite grid, or to obtain a global picture. The SHOW mode is

diagnostic; information about any of the defined entities can be called to the screen.

either graphically or numerically. Both ZOOM and SHOW are nonhierarchical and

can be invoked at any time.

M*E*S*H SYSTEM FUNCTIONS 216

Overview of System Functions

I #USERDEF I ISTRAIGHT LEGEND:

I #DEFINE -, I #STANDARD - I $CONICAL - MODE

SHERMITE I SPOLYNOM $ - TOOL

I $SPLINE & - COMMAND

SBEZIER

I#MODIFY - I SPARM

I $TRIM

ISFIT

I $SHIFT

#COPY - I SROTATE

I *CURVE - (MOVE) I $SHR;K

WISMIRROR

ISAFFLNE
I SPHYSICAL

II#BCS -
I &SPLIT SPERIODIC

#SUBCURVE - I &MOVE
[I&MERGE

I&CLEAR I&ROLE

I&DELETE]&CLEAR
I SMANUAL

I &LOGIC I #CONNECT - I

#CHECK - I &FOLDING I #GEOMETRY - I SSUBCURVE I&AUTO

I SCURVE

SI #SIDE - I&DELETE

I#DEFINE - I $STRETCH I&CLEAR I SLOCATION

#MESH - I #GRID - I (MODIFY) ISCELLS I I ROLE

II SMAPPING I* FUNCTION - I& SPLIT

I&DELETE ISORIGIN I &MOVE

I &MERGE

I DEFINE - I $CURVE I&CLEAR

I (MODIFY) I $GRID

*OBJECT- I COPY ISOBJECT

(MOVE)

&DELETE

I &CLEAR
I SMANUAL

I *DEFINE - I
I #ORDER - I (MODIFY) I$ALGORITHNf

I IkCHECK
I CENONHIERARCHIC Al.

I $LOAD
*SHOW

I #FILE - I $(O)WRITE SZOOM

Appendix C

NAVIER-STOKES DISCRETIZATION COEFFICIENTS

In this appendix the complete coefficients for the discretized Navier-Stokes equa-

tions, as derived in Chapter 7, are given. The discrete continuity equation for the

grid cell with center-point indices (i + },j + 1) is:

A- .+ A,,u+ Ause+ Au, + A-v°, + AV, + Ave + A, Vne =0. (C.1)

The coefficients are:

. - J /2, (C.2)

i 2. 8+2 . tjA M = 49' ") + - ,

I-1 ,J 2 i+L 2,

_u axo. . /2, (C.3)

A ftw = +_ (J + -]+ j+11

27

A ax + /2, (C.3)
2e I (/ + 3 1)

2 28

= J /2, (C.4)

2 2
A-v j 7/2, (C.6)

+n ' /2, (C.7)

A '9Ya /2, (C.8)

= {(e~ ~+ () /2. (C. 9)

217

DISCRETIZATION COEFFICIENTS 218

The discrete u-momentum equation for the node with indices (ij) is:

A" up = A' uE + A w uw + A" UN + A" us + ac" +

Au p,,., + A" pa. + Au p,. + A'P p.,, (C.10)

The coefficients are:

Al = DeA(IPe) + max[-F,,O, (C.11)

Au = DwA(IP,1) + max[+F,,O], (C.12)

A = D.A(IP.I) + max[-Fn,0], (C.13)

A D,A(IPo) + max[+F,,0], (C.14)
A4 = A+A "(C.15)A!+wu + AuN + A s ,

S{i- /2, (C.16)

= +,' - ,j (J! -

= + (-i + /2, (C.17)

A.P = {9 . + (o ,,_ /2, (C. 1)

where the quantities F, D, P, and A are defined using the relations (7.42) through

(7.46).

The discrete v-momentum equation for the node with indices (i, j) is:

A' vp = A' vE + A' vw + A' Nv + As rs + sc' +

AP. Pnw + Av, pat + AvP Pne + A P (C.20)

The coefficients are:

At- Au, (C.21)

A.- Au, (C.22)

A . - A .u . (C .23)

DISCILETIZATION COEFFICIENTS 219

-A (C.24)

A --a A , (C.25)

- {- , + () /2. (C.29)

Note that the coefficients for the convection/difuion operator are the same for

the u- and v-momentum equations, which means that fewer field arrays need to be

stored. This is another beneficial property of the modified staggered grid.

The source terms for both momentum equations are composed of skewed fluxes and

central-difference corrections.

References

[ACR68] A. Acrivos, L.G. Leal, D.D. Snowden, F. Pan, Aurther Ezperiments on Steady

Separated Flows past Bluff Objects, Journal of Fluid Mechanics, Vol. 34, Part 1,

pp. 25-48, 1968

[AND88] C.R. Anderson, Derivation and Solution of the Discrete Pressure Equations for

the Incompressible Namier-Stokes Equations, Report to Appear, University of

California, Los Angeles, Department of Mathematics, 1989

[ATT83] E.H. Atta, J. Vadyak, A Grid-Overlapping Scheme for Flowfield Computations

about Multicomponent Configurations, AIAA Journal, Vol. 21, No. 9, pp. 1271-

1277, 1983

[BEN86] J.A. Benek, J.L. Steger, P.G. Buning, Chimera: A Grid-Embedding Technique,

Arnold Engineering Development Center, Report AEDC-TR-85-64, 1986

[BER82] M.J. Berger, Adaptive Mesh Refinement for Hyperbolic Partial Differential

Equations, Ph.D. Thesis, Stanford University, 1982

[BER84] M.J. Berger, On Conservation at Grid Interfaces, ICASE Report No. 84-83,

NASA Langley Research Center

[BER86] T. Berglind, A Comparison of Single-Block and Multi-Block Grids around Wing.

Fuselage Configurations, The Aeronautical Research Institute of Sweden. Re-

port No. FFA TN 1986-42, 1986

[BRO89A] D.L. Brown, G. Chesshire, B. Henshaw, Getting Started with CMPGRD: Intro-

ductory User's Guide and Reference Manual, Los Alamos Rept. No. LA-UR-

89-1294M, 1989

[BRO89B] D.L. Brown, G. Chesshire, B. Henshaw, Composite Grid Data; An Ezplana-

tion of the CMPGRD Composite Grid Data Structure, IBM Watson Research

Center, Report No. RC 14354 (# 64299), 1989

220

REFERENCES 221

[CAR85] S.C. Caruso, Adaptive-Grid Techniques for Elliptic Pluid-Flow Problems,

Ph.D. Thesis, Stanford University, 1985

[CHA88A] T.F. Chan, D. Goovaerts, Schuoarz=Schur: Overlapping Versus Nonoverlap-

ping Domain Decomposition, CAM Report 88-21, University of California, Los

Angeles, 1988

[CHA88B] T.F. Chan, Domain Decomposition Algorithms and Computational Fluid Dy-

namics, CAM Report 88-25, University of California, Los Angeles, 1988

[CHE86] G.S. Chesshire, Composite Grid Construction and Applications, Ph.D. Thesis,

California Institute of Technology, 1986

[CHI87] R.C.Y. Chin, G.W. Hedstrom, J.S. Scroggs, D.C. Sorensen, Parallel Computa-

tion of a Domain Decomposition Method, CONF-870677-8, DE87 011444

[COL73] W.M. Collins, S.C.R. Dennis, Flow past an Impulsively Started Circular Cylin-

der, Journal of Fluid Mechanics, Vol. 60, Part 1, pp. 105-127, 1973

[DAN86] J.F. Dannenhoffer III, J.R. Baron, Robust Grid Adaptation for Complex Than-

sonic Flows, AIAA-86-0495, Reno, Nevada, 1986

[DEN70] S.C.R. Dennis, G-Z. Chang, Numerical Solutions for Steady Flow past a Circular

Cylinder at Reynolds Numbers up to 100, Journal of Fluid Mechanics, Vol. 42,

Part 3, pp. 471-489, 1970

[DOU85] F.C. Dougherty, J.A. Benek, J.L. Steger, On Applications of Chimera Grid

Schemes to Store Separation, NASA Technical Memorandum 88193, 1985

[DYN83] N. Dyn, W.E. Ferguson, Jr., The Numerical Solution of Equality-Constrained

Quadratic Programming Problems, Mathematics of Computation, Vol. 41,

No. 163, pp. 165-170, 1983

(EHR861 L.W. Ehrlich, The Numerical Schwarz Alternating Procedure and SOR, SLk1M

Journal of Scientific and Statistical Computing, Vol. 7, No. 3, pp. 989-993, 1986

[EIS79] P.R. Eiseman, A Multi-Surface Method for Coordinate Generation, Journal of

Computational Physics, Vol. 33, pp. 118.150, 1979

REFERENCES 222

[EIS87] P.R. Eiseman, G. Erlebacher, Grid Generation for the Solution of Partial Dif.

fererntial Equations, ICASE Report 87-57, 1987

[FAU81] I.D. Faux, M.J. Pratt, Computational Geometry for Deign and Manufacture,

John Wiley & Sons, 1981

[FLO83] J. Flores, T.L. Hoist, D. Kwak, D.M. Batiste, A New Contitent Spatial Dif-

ferencing Scheme for the 7Trnaonic Fl Potential Equation, AIAA-83-0373,

Jan. 1983

[FUC85] L. Fuchs, Multi-grid Solutions on Grids with Non-Aligning coordinates, Progress

Report, Royal Institute of Technology, Stockholm, Sweden, 1985

[FUC87] L. Fuchs, Numerical Computation of Viscous Incompressible Flows in Systems

of Channels, AIAA-87-0367, Reno, Nevada, 1987

[FUN88] D. Funaro, A. Quarteroni, P. Zanolli, An Iterative Procedure with Interface

Relazation for Domain Decomposition Methods, SIAM Journal on Numerical

Analysis, Vol. 25, No. 6, pp. 1213-1236, 1988

[GR064] A.S. Grove, F.H. Shair, E.E. Petersen, A. Acrivos, An Experimental Investi-

gation of the Steady Separated Flow past a Circular Cylinder, Journal of Fluid

Mechanics, Vol. 19, pp. 60-80, 1964

[HAU86] J. Hiuser, H.G. Paap, D. Eppel, S. Sengupta, Boundary Conformed Co-

Ordinate Systems for Selected Two-Dimensional Fluid Flow Problems. Part II:

Application of the BFG Method, International Journal for Numerical Methods

in Fluids, Vol. 6, pp. 529-539, 1986

[HEN85] W.D. Henshaw, Part I: The Numerical Solution of Hyperbolic Systems of Con-

servation Laws; Part II: Composite Overlapping Grid Techniques, Ph.D. Thesis.

California Institute of Technology, 1985

[HES8G] K.A. Hessenius, M.M. Rai, Applications of a Conservative Zonal Schemc to

Transient and Geometrically Complez Problems, Computers and Fluid, Vol. 14.

No. 1, pp. 43-58, 1986

[HOL85] T.L. Holst, S.D. Thomas, U. Kaynak, K.L. Gundy, J. Flores, N.M. Chader-

jian, Computational Aspects of Zonal Algorithms for Solving the Compressible

REFERENCES 223

Navter-Stokes Equations in Three Dimensions, NASA Technical Memorandum

86774, 1985

[HOL87] J.E. Holcomb, Development of a Grid Generator to Support 3-D Mutdizone

Naier-Stokes Analysis, AIAA-87-0203, Reno, Nevada, 1987

[HON69] H. Honji, S. Taneda, Unsteady Flow past a Circular Cginder, Journal of the

Physical Society of Japan, Vol. 27, No. 6, pp. 1668-1677, 1969

[KAR87] G.E. Karniadakis, A.T. Patera, Numerical Simulation of Forced Convection

Heat Transfer from a Cylinder in Crossflow, Rept. No. FML-87-001, Fluid Me-

chanics Laboratory, Department of Mechanical Engineering, Massachusetts In-

stitute of Technology, 1987

[KAW66] M. Kawaguti, P. Jain, Numerical Study of a Viscous Fluid Flow past a Circular

Cylinder, Journal of the Physical Society of Japan, Vol. 21, No. 10, pp. 2055-

2062, 1966

[KAY86] t. Kaynak, T.L. Hoist, B.J. Cantwell, Computation of Trunsonic Separated

Wing Flows Using an Euler/Navier-Stokes Zonal Approach, NASA Technical

Memorandum 88311, 1986

[KUM80] A. Kumar, K.S. Yajnik, Internal Separated Flows at Large Reynolds Numbers,

Journal of Fluid Mechanics, Vol. 97, pp. 27-51, 1980

[MAL83] C.R. Maliska, G.D. Raithby, Calculating Three-Dimensional Fluid Flows using

Nonorthogonal Grids, Proceedings of the Third International Conference on

Numerical Methods in Laminar and Turbulent Flows, Seattle, pp. 656-666, 1983

[MAR87] L.D. Marini, A. Quarteroni, A Relaxation Procedure for Domain Decomposition

Methods Using Finite Elements, Instituto di Analysi Numerica del Consiglio

Nazionale Delle Ricerche, Pavia, Italy, Publication No. 577, 1987

[MEA86] R.L. Meakin, Application of Boundary Conforming Coordinate and Domain

Decomposition Principles to Environmental Flows, Ph.D. Thesis, Stanford Uni-

versity, 1986

[MEA88A] R.L. Meakin, R.L. Street, Simulation of Environmental Flow Problems in Ge-

ometrically Complex Domains. Part I. A General Coordinate Transformation.

RERENCES 224

Computer Methods in Applied Mechanics and Engineering, Vol. 68, pp. 151-

175, 1988

[MEA88B] R.L. Meakin, R.L. Street, Simulation of Environmental Plato Problems in Geo-

metrically Complez Domains. Part II: A Domain-Splitting Method, Computer

Methods in Applied Mechanics and Engineering, Vol. 68, pp. 311-331, 1988

[MIL65 K. Miller, Numerical Analogs to the Schuarz Alternating Procedure, Numerische

Mathematik, Vol. 7, pp. 97-103, 1965

[NAK87] K. Nakahashi, S. Obayashi, Viscous Flow Computations Using a Composite

Grid, AIAA-87-1128-CP, Honolulu, Hawaii, 1987

[OL184] J. Oliger, Adaptive Grid Methods for Hyperbolic Partial Differential equa-

tions, Inverse Problems of Acoustic and Elastic Waves, F. Santosa, Y.-H. Pao,

W.W. Symes, C. Holland, Eds., SIAM, Philadelphia, 1984

[05583] G.A. Osswald. A Direct Numerical Method for the Solution of Unsteady Navier-

Stokes Equations in Generalized Orthogonal Coordinates, Ph.D. Thesis, Univer-

sity of Cincinnati, 1983

[PAT81] S.V. Patankar, A Calculation Procedure for Two-Dimensional Elliptic Situa-

tions, Journal of Numerical Heat Transfer, Vol. 4, pp. 409-425, 1981

[PAT80] SAV. Patankar. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980

[PED86] G. Pedersen, On the Effects of Irregular Boundaries in Finite Difference Models,
International Journal for Numerical Methods in Fluids, Vol. 6, pp. 497-505, 19SG

[PERS5] M. Peri. A Finite Volume Method for the Prediction of Three-Dimensional

Fluid Flow in Complez Ducts, Ph.D. Thesis, Imperial College, University of

London, 1985

[PER89A] C-Y. Perng, R.L. Street, Three-Dimensional Unsteadyh Flow Simulations: Al-

ternative Strategies for a Volume-Averaged Calculation, International Journal

for Numerical Methods in Fluids, Vol. 9, pp. 341-362, 1989

[PER89B] C-Y. Perng, R.L. Street, A Domain-Decomposition Technique for Solving Ge-
ometrically Complez Flow Problems, Proceedings, 1989 ASME Winter Annual

REFERENCES 225

Meeting on Numerical Simulation of Convection in Electronic Equipment Cool-

ing, December 1989

[PER89C] C-Y. Perng, R.L. Street, A Coupled Multigrid-Domain-Splitting Technique for

Simulating Incompressible Flows in Geometrically Complex Domains, Submit-

ted to International Journal for Numerical Methods in Fluids, August 1989

[QUA87] A. Quarteroni, G. Sacchi Landriana, Parallel Algorithms for the Capacitance

Matrit Method in Domain Decomposition, Instituto di Analysi Numerica del

Consiglio Nazionale Delle Ricerche, Pavia, Italy, Publication No. 595, 1987

[RA185] M.M. Rai, An Implicit, Conservative, Zonal-Boundary Scheme for Euler Equa-

tion Calculations, AIAA-85-0488, Reno, Nevada, 1985

[RAI86] M.M. Rai, A Relaxation Approach to Patched-Grid Calculations with the Euler

Equations, Journal of Computational Physics, Vol. 66, pp. 99-131, 1986

[RA1871 M.M. Rai, Navier-Stokes Simulations of Rotor/Stator Interaction Using

Patched and Overlaid Grids, Journal of Propulsion, Vol. 3, No. 5, pp. 387-396,

1987

[ROD83] G. Rodrigue, J. Simon, A Generalization of the Numerical Schwarz Algorithm,

Proceedings of the Sixth International Conference on Computing Methods in

Applied Sciences and Engineering, Paris, France, 1983

[SCH69] H.A. Schwarz, Uber einige Abbildungsaufgaben, Journal fiir die Reine und Ange-

wandte Mathematik, Vol. 70, pp. 105-120, 1869

[SCH79] H. Schlichting, Boundary-Layer Theory, McGraw-Hill, 1979

[SCR88] J.S. Scroggs, The Solution of a Parabolic Partial Differential Equation via Do-

main Decomposition: The Synthesis of Asymptotic and Numerical Analysis,

Argonne National Laboratory, Mathematics and Computer Science Division.

Technical Memorandum 123, 1988

[SHI89] T.M. Shih, C.H. Tan, B.C. Hwang, Effects of Grid Staggering on Numeri-

cal Schemes, International Journal for Numerical Methods in Fluids, Vol. 9.

pp. 193-212, 1989

REFERENCES 226

[$KA87] W.C. Skamarock, Adaptive Grid Refinement for Numerical Weather Prediction,

Ph.D. Thesis, Stanford University, 1987

[SM1761 F.T. Smith, Flow through Constricted or Dilated Pipes and Channels, Part 1

and 2, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 29, Part

3, pp. 343-376, 1976

[SM177] F.T. Smith, Upstream Interactions in Channel Flows, Journal of Fluid Mechan-

ics, Vol. 79, part 4, pp. 631-655, 1977

[STO72] D.R. Stoutemyer, Numerical Implementation of the Schwarz Alternating Proce-

dure for Elliptic Partial Differential Equations, Ph.D. Thesis, Stanford Univer-

sity, 1972

[TAK] T. Takagi, K. Miki, An Approach to the Thermal-Hydraulic Analysis of Compli-

cated Piping by Domain Decomposition and Overlapping Techniques, Proceed-

ings of the Sixth GAMM-Conference on Numerical Methods in Fluid Mechan-

ics, Eds. Rues & Kordulla, Friedrich Vieweg & Sohn, Braunschweig/Wiesbaden,

W.-Germany

[TAN56] S. Taneda, Experimental Investigation of the Wakes behind Cylinders and Plates

at Low Reynolds Numbers, Journal of the Physical Society of Japan, Vol. 11,

No. 3, pp. 302-307, 1956

[TAN87] W-P. Tang, Schwarz Splitting and Template Operators, Ph.D. Thesis, Stanford

University, 1987

[TEM77] R. Temam, Navier-Stokes Equations; Theory and Numerical Analysis, Studies

in Mathematics and its Applications Vol. 2, North-Holland, 1977

[TH033] A. Thorn, The Flow past Circular Cylinders at Low Speeds, Proceedings of the

Royal Society of London, Series A, Vol. 141, pp. 651-669, 1933

[TH085] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation; Foun-

dations and Applications, Elsevier Science, 1985

[TH087] J.F. Thompson, A Composite Grid Generation Code for General 3-D Regions.

AIAA-87-0275, Reno, Nevada, 1987

REFERENCES 227

[VEN87A] E. Venkatapathy, C.K. Lombard, N. Nagaraj, Numerical mulation of Corn-

pressible Flow around Complex Two-Dimensional Cavities, AIAA-87-0116,

Reno, Nevada, 1987

(VEN87B] E. Venkatapathy, C.K. Lombard, J. Bardina, R. C-C. Luh, Accurate Numerical

Simulation of Supersonic Jet Ezhauat Flow with CSCM on Adaptive Overlapping

Grids, AIAA-87-0465, Reno, Nevada, 1987

[VOG88i A. Andrews-Vogel, A Knowledge-Based Approach to Automated Flow Field Zon-

ing for Computational Fluid Dynamics, Ph.D. Thesis, Stanford University, 1988

